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The Kitaev models

Since many of the ideas involved in TQC appear rather abstract and perhaps a priori
speculative, it is useful to have a concrete model that is analytically soluble, so that one
can see quite explicitly how these features emerge. In the (short) history of the subject two
models, both due to A.Yu. Kitaev, have been particularly influential. While to date neither
has been fully implemented, there is a reasonable hope of implementing them using purpose-
engineered systems such as optical lattices or arrays of Josephson junctions. The first
model, the so-called “toric code” is a system that has degenerate topologically protected
groundstates, and this is in principle suitable for the implementation of a quantum memory;
however, as in the case of the ν = 1/3 QHE on a torus, the excitations are abelian anyons,
so it is not directly useful for TQC (or more precisely, it can store only 2 topologically
protected qubits independently of the system size – see below). Its advantage is that
the analytic solution is rather straightforward. The second model, the so-called “Kitaev
honeycomb model” sustains nonabelian (Ising) anyons over part of the parameter space,
so is in principle suitable for (partially protected) TQC, but is considerably more difficult
to analyze. I will discuss them in turn, but in the case of the honeycomb model will have
to quote some of the results without derivation.

The toric code1
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Figure 1:

Consider a 2D plane lattice of N×N points, with periodic
boundary conditions (equivalent to bending the plane into a
torus). We define a spin vector σi (“qubit”) associated with
each link (not site!) of the lattice; thus the total number of
spins (qubits) is 2N2.

Note that because of the periodic boundary conditions,
these links include (e.g.) one between the two sites (M, 1)
and (M,N) which lie on opposite faces of the array as in fig.
1. If we label each vertical
link by convention by the site at its bottom end, then this
link is labeled (M, N); it has exactly the same status as any
other vertical link. Similar remarks apply to the horizontal
links.

All components of spins of different links are mutually commuting, while the different
Cartesian components of spin on a given link anticommute, i.e.

{σ̂iα,σ̂iβ} = 2δαβ (α, β = x, y, z) (1)

but
[σ̂iα,σ̂jβ] = 0 if i 6= j (2)

1A. Yu. Kitaev, Ann. Phys. 303, 2 (2003)
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As a result of (1) and (2) we have the important relation

[σ̂iασ̂jα,σ̂iβσ̂jβ] = 0 ∀ i, j (3)

Consider the (not very physical-looking) Hamiltonian

Figure 2:

Ĥ = −
∑
s

Âs −
∑
p

B̂p (4)

where

Âs ≡
∏

jε star(s)

σ̂xj , B̂p ≡
∏

jε bound (p)

σ̂zj (5)

Here the “star” of the lattice point S means the four links
emanating from S, and the “boundary” of the intercalated
“pseudo-lattice point” p means the four links surrounding p
(see fig. 2). Note that the possible eigenvalues of both Âs
and B̂p are ±1, and that ∏

s

Âs =
∏
p

B̂p = +1 (6)

The condition (6) is very important in the subsequent analysis: note that it follows only
because we have imposed periodic boundary conditions, so that (for example) σM,N+1 is
identified with σ̃M,1, thus every link is represented exactly twice in each of the two products.

It is obvious that [Âs, Âs′ ] = [B̂p, B̂p′ ] = 0, ∀s, s′, p, p′. Moreover, since As and Bp
have either 0 or 2 links in common, it follows from (3) that [Âs, B̂p] = 0, ∀s, p. Hence
all the Âs and all the B̂p are good quantum numbers (that is, they can be diagonalized
simultaneously with Ĥ and with one another), so that their values can be used to label the
energy eigenstates. In particular, the groundstate is a common eigenstate of all the Âs and
all the B̂p, with Âs = B̂p = +1, ∀s, p; it has energy E0 = −4N2. Furthermore, in view of
the relation (6), any excited state must have at least two As or two Bp reversed, thus the
minimum excitation energy is given by

Emin = 4 (7)

Now comes the crunch: The groundstate must be 4-fold degenerate! The easiest way
to see this is to note that since there are 2N2 qubits, the total Hilbert space must have
dimension 22N

2
. However, in view of the constraint (6), there are only 2N2−2 independent

As and Bp, thus only 22N
2−2 conditions on the GS. Hence the dimensionality of the GS

manifold is 22N
2
/22N

2−2 = 22 = 4.
This argument, however, does not give us much intuition into the nature of the degen-

eracy. To get some, let’s work in the standard (“σz”) basis and associate with σzj = +1(−1)
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Figure 3:

the quantity zj = 0(1). Then the GS constraint Bp = 1 is equivalent to

ϕp ≡
∑
jεCp

zj = 0 (mod 2) (8)

where Cp is the boundary of pseudo-lattice point p. Now imagine combining two neighbor-
ing blocks (“plaquettes”) as in fig. 3; and consider

ϕC′′ ≡
∑
j∈C′′

zj (≡ z1 + z4 + z3 + z7 + z6 + z5) (9)

Evidently, since have removed twice z2, we have in the GS

ϕC′′ ≡ ϕp + ϕp′ − 2z2 = 0 (mod 2). (10)

Iterating this procedure, we have for the ϕ corresponding to the whole array,

ϕtot ≡
∑
jεCtot

zj = 0 (mod 2) (11)

But in view of the periodic boundary conditions2 we have edge 1 ≡ edge 3, edge 2 ≡
edge 4. Hence the groundstate can be characterized by two independent quantities, each
of which can take only the values 0, 1:

υ1 ≡
( ∑
jε edge1

ẑj

)
= 0, 1 (12a)

2Strictly speaking, we need to interpret “edge 1” as corresponding to the horizontal link (M,N + 1)
rather than (M,N), etc.
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Figure 4:

υ2 ≡
( ∑
jε edge2

ẑj

)
= 0, 1 (12b)

giving 4 different states. Of course, we could equally well have defined quantities

ξ̂1 ≡
∏

jε edge 1

σ̂zj = ±1, etc. (13)

but the outcome is the same. Furthermore, it is clear that in the definition of υ̂1, υ̂2 we
can displace the contours to arbitrary values of n (for υ1) and of m (for υ2), as in fig. 4,
provided that they still loop around the torus.

Now let us raise the question: What operators connect the degenerate states in the GS
manifold? Let’s continue to work in the standard (σz−) representation, and define “string”
operators of the form

ZC ≡
∏
jεC

σ̂zj , XC′ ≡
∏
jεC′

σ̂xj (14)

where C and C ′ denote closed contours, i.e. they return to their starting point (but may
or may not loop around the torus in the process). It is convenient to imagine C ′ to be
displaced to the intercalant sites3 as in fig. 5, which shows a “contractible” C loop (i.e.
one that does not wind around the torus in either direction), and both contractible and
non-contractible C ′ loops.
If a Z-loop is contractible, then according to the above argument it can be written in

the form
∏

p inside C

Bp, and hence within the GS manifold is equivalent to the unit operator.

3This is just a notational convention that allows us to define the notion of “inside C′” unambiguously,
see below.
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Figure 5:

Similarly, a little thought shows that any contractibleX-loop can be written as
∏

S inside C′

As,

and again is equivalent to the unit operator within the GS manifold.
What if a loop is not contractible, but encircles the torus in (say) the horizontal direc-

tion? In the case of a Z-loop, such a loop is exactly the operator ξ̂1 of eqn. (13), so it
has the appropriate eigenvalue ±1 depending on whether υ1 is 0 or 1. Similarly, a Z-loop
that encircles the torus in the vertical direction is equivalent to ξ̂2 and has eigenvalue ±1
depending on whether υ2 is 0 or 1. From now on it is convenient to work in terms of opera-
tors Ẑ1 and Ẑ2, corresponding to Z-loops encircling the torus in the horizontal and vertical
directions respectively, with eigenvalues ±1. Evidently, [Ẑ1, Ẑ2] = 0, and the four possible
combinations of eigenvalues (±1,±1) define a “2-qubit” manifold. Now the crunch: what
if an X-loop encircles the torus in (say) a horizontal direction (call this operator X̂1)? It
does not affect Ẑ1, because it is always possible to displace the X- and Z-loops so that
they have no link in common4

[X̂1, Ẑ1] = 0 (15)

and of course a similar relation for X̂2 and Ẑ2. The situation is different as regards the
C.R. of X1 and Ẑ2: with even the simplest choice of paths, it is clear that the two loops
must have one spin in common (and more complicated choices always give an odd number).
Suppose we label this spin 0, then the anticommutator of X̂1 and Ẑ2 is given by

{X̂1, Ẑ2} = {σ̂x0 , σ̂z0} = 0 (16)

and similarly {X̂2, Ẑ1} = 0. Thus, we can make the correspondences

Ẑ1 → σ̂z1 (17a)

4If they do have links in common (i.e. cross one another), it is easy to see that it must be an even
number, so according to eqn. (3) the operators X̂1 and Ẑ1 still commute.
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Ẑ2 → σ̂z2 (17b)

X̂1 → σ̂x2 (note 1 � 2 here !) (17c)

X̂2 → σ̂x1 (17d)

so that the Z’s and X’s form Pauli matrices in the 2-qubit (4-dimensional) groundstate
manifold.

So far, so good; we have shown that the groundstate of the toric-code Hamiltonian (4) is
4-fold degenerate, but we have not shown that the degeneracy is “topologically protected.”
By this we mean the following: Consider any operator Ω̂ that is of the form

Ω̂ ≡ σ̂αi σ̂
β
j σ̂

γ
k . . . (18)

where the links i, j, k . . . , while not necessarily “nearest-neighbors,” are “nearby,” in the
sense that the maximum distance involved can be made arbitrarily small compared to N
in the thermodynamic limit N →∞. Such operators may be called “local”. Since we can
displace the contours C1, C2, C

′
1, C

′
2 that define the operators Z1, Z2, X1, X2 arbitrarily

(so long as they continue to wrap around the torus) it is clear that we can choose them so
that Ω̂ and (e.g.) Ẑ1 have no spins in common, so that

[Ω̂, Ẑ1] = 0 (19)

In a similar way we can show that [Ω̂1, Ẑ2] = [Ω̂1, X̂1] = [Ω̂1, X̂2] = 0. But recalling that
Ẑ1 → σ̂Z1, X̂2 → σ̂x1 , etc., this means that within each of the “single-qubit” 2D Hilbert
spaces Ω̂ commutes with both the Pauli operators σ̂z and σ̂x. But it is easily shown that in
a 2D Hilbert space any operator having this property must be just a multiple of the unit
operator, so it follows that within the GS manifold

Ω̂ = const. 1̂. (20)

Thus, any effect by which Ω̂ causes transitions between the different groundstates, or shifts
their relative energy, must come from indirect processes, in which Ω̂ generates a virtual
transition out of the GS manifold. However, assuming that the number of operators in Ω̂ is
O(1) (not O(N)), it must operate of order N times (since the operators Ẑi and X̂i change
the state of O(N) links); each operation involves an energy denominator ∼ E0, so if the
relevant matrix element of Ω̂ is ω, the final transition amplitude is O(ω/E0)

N ∼ exp−αN
where α ≡ ln(E0/ω). Thus the degeneracy of the groundstate is indeed “topologically’
protected in the thermodynamic limit, provided only that ω < E0.
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An attractive feature of the toric code model is that one can actually write down the
wave functions of the four degenerate groundstates in explicit form. Consider the expression
(“Hadamard” state)

ΨHad(z1z2 . . . zN ) ≡
2N2∏
j=1

Ĥj |0〉 (21)

where |0〉 is the state specified by zj = 0(σzj = +1), ∀j and Ĥj is the Hadamard gate on
the j-th qubit, with the explicit form

Ĥ = 2−1/2
(

1 1
−1 1

)
(22)

The “Hadamard” state (21) is just a linear superposition of all the possible 22N
2

states of
the system with identical amplitude; it is an eigenfunction of each of the σ̂jx with eigenvalue
+1, thus also an eigenstate of all the operators Âs with eigenvalue +1. However, it is not
an eigenfunction of the B̂p, since different terms have different values of σ̂jz and thus of B̂p.
We, therefore, project the Hadamard state on to the subspace corresponding to B̂p = 1, ∀p.
Because of the relation [Âs, B̂p] = 0, this does not spoil the result that that As = +1, ∀s.
Thus the resulting state is a linear combination of the four groundstates specified by (11),
with equal amplitudes. Finally we select a particular groundstate by imposing the extra
pair of conditions which specify υ1 and υ2 (eqn. (12)). The explicit expression for a
particular state Ψ(υ1υ2) is therefore, apart from normalization,

Ψ(υ1, υ2) =
∑
{zj}

|z1z2 . . . z2N2〉 (23)

∀Bp = +1,
∑

jε edge 1

zj = υ1,
∑

jε edge 2

= υ2

(the condition ∀Bp = +1 is not noted explicitly in Kitaev’s original paper, but is implicit
in the preceding discussion.) It is superfluous to note that the states (23) are strongly
entangled.

So much for the groundstate manifold. Now let’s consider the elementary excitations of
the model. Let’s start with the system in the GS manifold and create “strings” Sz(t), Sx(t)
defined by

Ŝz(t) ≡
∏
jεt

σ̂zj , Ŝx(t′) ≡
∏
jεt′

σ̂xj (24)

where now t and t′ are open contours with ends (see figure).
The operator Ŝz(t) obviously commutes with all the Bp, and it commutes with all the
As except for the end-point sites, where it inverts the sign of As; consequently it costs
an energy 4. Similarly, the operator Ŝx(t) commutes with all the As and with all the Bp
except the end ones which it inverts; again the cost is 4. So a string of each type costs
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the minimum excitation energy 4. Actually, once the endpoints are fixed it doesn’t matter
how we lay the string, provided that we neither wrap it around the torus nor cross another
string (see below). Thus it is only the endpoints that are significant, and they can be
regarded as independent quasiparticles.5

It is clear that moving one X-qp (the end of a Sx-string)

Figure 6:

around a second X-qp (or a Z-qp around a Z-qp) has no
effect (i.e. does not change the state), since all the operators
involved commute. Also, moving a pair of X-qps around a pair
of Z-qps has no effect (all spin operators occur either zero or 2
times). But what about moving a single X-qp around a single
Z-qp? (see figure). This is equivalent to crossing a Z-string
with an X-string, and will result in a single link j being oper-

Figure 7:

ated on with both σ̂xj and σ̂zj . If Sz(t) and Sx(c) have no link
in common, they commute, while if they have a single link in
common (i.e. cross once) they anticommute. Hence, if |ψq〉
denotes the state created by Sx(q) and |0〉 the GS, the initial
and final states are given by

Ψin = Ŝz(t)Ŝx(q)|0〉 ≡ Ŝz(t) |ψq〉
Ψf = Ŝx(c)Ŝz(t)Ŝx(q)|0〉 ≡ Ŝx(c)Ŝz(t) |ψq〉

= −Ŝz(t)Ŝx(c) |ψq〉
(25)

But Ŝx(c)|ψq〉 ≡ Ŝx(c)Ŝx(q) |0〉 = Ŝx(q)Ŝx(c)|0〉, and since
the closed-contour operator Ŝx(c) can be shrunk to the iden-
tity, this is just Sx(q) |0〉 ≡ |ψq〉. Hence

Ψf = −Ŝz(t) |ψq〉 = −Ψin (26)

Hence, where a Z-qp is encircled by an X-qp there is a sign
change −1 ≡ exp iπ, and correspondingly when an X-qp and a Z-qp are interchanged we
get a factor exp iπ/2 i.e. X and Z are “relative semions” (note not “fermions”!)

What is the connection between the topologically protected groundstate and the anyonic
statistics of the excitations? In considering the operators X1, X2, Z1, Z2 necessary to move
between the degenerate groundstates we showed that

{Ẑ1, X̂2} = 0 (27)

which implies
X̂−12 Ẑ−11 X̂2Ẑ1 = −1 (28)

We can interpret the operation Ẑ1 as creating a pair
of anyons at O and taking one of them around the torus in the vertical direction back

to O; the operation Ẑ−11 then reverses the encirclement and annihilates the anyon pair

5Compare the idea of separating a (number-conserving) excitation of a degenerate Fermi liquid into two
independent “particle” and “hole” components.
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back into the groundstate. Similarly X̂2 creates a pair at O′ and takes one of the anyons
around in the horizontal direction.

However, the operation (28) does not actually need a torus:

1

2

Figure 8:

Figure 9:

This is topologically equivalent (try it with a couple of pieces of string!) to the (3D)
picture, fig. 10a, and if we “forget” about the rest of the Z-string and concentrate just
on the dot, the latter picture is in turn equivalent to fig. 10b, so we would expect the
“encirclement phase” to be π and the “exchange phase” π/2, as already found. (Note that
this argument does not as it stands distinguish between +π/2 and −π/2!)

Because of the form of the Hamiltonian (eqn. (4)), which involves 4-spin interactions, it
seems rather unlikely that the toric code model is implemented by any naturally occurring
physical system; and while it is not out of the question that it may be possible to implement
it in purpose-engineered systems such as optical lattices, it will almost certainly not be at
all trivial to do so. However, it fortunately turns out that it is actually isomorphic to
a particular parameter regime of a second model, the “Kitaev honeycomb model,” which
may be easier to implement experimentally. I now turn to this topic, though unlike in the
toric case, I shall have to quote a number of results without derivation.
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Figure 10:

The Kitaev honeycomb model6

Figure 11:

We consider a planar honeycomb lattice with quantum
spins of 1/2 sitting on each vertex (not, as in the toric code,
on the links). The links are labeled x, y, z according to their
orientation, as shown. The Hamiltonian is of the form of
a 2-spin nearest-neighbor interaction, with the components
that are coupled depending on the direction of the nearest-
neighbor link in question:

Ĥ = −Jx
∑

x−links
σ̂xi σ̂

x
j − Jy

∑
y−links

σ̂yi σ̂
y
j − Jz

∑
z−links

σ̂zi σ̂
z
j (29)

where the coupling constants Jx, Jy, Jz may have either sign. We note (and will return to
this and related points later in the context of possible implementations) that the association
of (e.g.) the σx− components with an “x-link” is purely conventional.

In analyzing the behavior of the model described by eqn. (29) one makes essential use
of a generalized form of eqn. (3), which we recall is

[σ̂iασ̂jα, σ̂iβ, σ̂jβ] = 0
(i, j = sites, α, β = Cortesian components)

(30)

We can generalize this to
[σ̂iασ̂jβ, σ̂iγ σ̂jγ ] = 0 (31)

6A. Yu Kitaev, Ann. Phys. 321, 2 (2006); H-D Chen and Z. Nussinov, J. Phys. A: Math. Theor. 41,
075001 (2008).
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provided that α and β are both different from γ. Consider the “plaquette operator” Ŵp

defined by
Ŵp ≡ σ̂x1 σ̂

y
2 σ̂

z
3 σ̂

x
4 σ̂

y
5 σ̂

z
6 (32)

Because each spin component acts only at a vertex where the external bond is in the cor-
responding direction, Ŵp commutes with all the terms in (29) that involve bonds external
to the plaquette. Also, because of (31), it commutes with the terms involving the bonds
that form the boundary to the plaquettes. Moreover, the different Wp commute with one
another, since any two plaquettes share either 0 or 2 vertices. Consequently, the Wp’s can
be independently diagonalized simultaneously with the Hamiltonian, with eigenvalues

Wp = ±1. (33)

The total Hilbert space can thus be broken up into manifolds (sectors) defined by different
values of the set {Wp}. If we rewrite Wp as

Ŵp ≡ σ̂x1 σ̂x4 σ̂
y
2 σ̂

y
5 σ̂

z
3 σ̂

z
6 (34)

it is plausible (and actually turns out to be correct) that for Jx, Jy, Jz > 0 (“ferromagnetic”
interactions) the groundstate lies in the sector Wp = +1, ∀p. All states in sectors with any
of the Wp = −1 have nonzero energy gaps relative to the GS.

However, the original Hilbert space is 2n-dimensional, where

1

2
3

4

5
6

Figure 12:

n is the number of vertices, while the number of degrees of
freedom described by the {Wp} is the number of plaquettes,
which is n/2 not n. Hence each sector of the Hilbert space,
and in particular the sector containing the GS, is 2n/2− di-
mensional (crudely speaking, each plaquette p possesses one
DOF that is not described by Wp).

The complete solution of the honeycomb model is not at
all trivial; the most accessible discussion (in my opinion) is
given by Chen and Nussinov, ref. cit. They show that within
the groundstate sector Wp = +1, ∀p, the Hamiltonian can be mapped formally to that of
a 2D p-wave Fermi superfluid with Hamiltonian

Ĥ =
∑
q

εqa
†
qaq +

i∆q

2
(a†qa

†
−q + H.c.) (35)

with
εq ≡ 2Jz − 2Jx cos qx − 2Jy cos qy
∆q ≡ 2Jx sin qx + 2Jy sin qy

(36)

We find by the standard BCS procedure that the quasiparticle excitation spectrum has the
usual form

Eq =
√
ε2q + ∆2

q (37)
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A, gapped

B, gapless

Figure 13:

It is easy to verify that if the magnitude of any of the Jα (α = x, y, z) is greater than the
sum of the other two (the shaded regions in fig. 13), then irrespective of the sign of the J ’s
the quasiparticle spectrum is gapped. Since we already saw that there is a gap between
the GS sector and any other, this implies that in this parameter regime there is a nonzero
gap for any excitation of the groundstate (“gapped” phase). This regime is called the A
phase of the model.

Suppose we start in the GS sector with no fermionic (i.e. BCS-like) excitations present,
and try to create other types of excitation. The obvious possibility is to change the values
of some of the Wp from +1 to −1, thereby creating a “vortex” on plaquette p. However,

because of the obvious constraint
∏
p

Wp = +1, we can create these “vortices” only in pairs.

One possibility is to apply the operator (see figure 14a)

exp−iπ
2
σ̂za (38)

Since this leaves σza (and all components of σb) invariant but inverts σxa and σya, it changes
the value of Wp on both p1 and p2 but leaves all other plaquettes unaffected.

A second possibility is to apply (see figure 14b) the operators

exp iπσ̂xa exp iπσ̂yb (39)

This changes 2 spins on each of the plaquettes p1 and p2, so does not affect Wp1 or Wp2 ,
but inverts only one spin on p3 and p4, thus effecting Wp3 → −Wp3 , etc. Once a vortex has
been created, it can be moved around just like the anyons in the toric-code model. In fact,
one can make an exact mapping between the zero-fermion sector of the honeycomb model
in the “A” (gapped) phase and the toric code. An obvious consequence of this is that the
anyons of the A phase (the vortices) are abelian, (something that is not too difficult to
demonstrate explicitly) and thus cannot be used for quantum computation.
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The more interesting phase in the context of TQC is the B (“gapless”) phase, which
occupies the parameter regime

|J |x ≤ |Jy|+ |Jz|
|J |y ≤ |Jz|+ |Jx|
|J |z ≤ |Jx|+ |Jy|

(40)

i.e. the unshaded region of fig 13. This is in some sense the regime where one expects
maximal frustration and hence perhaps an interestingly entangled groundstate. The general
belief, based on somewhat indirect arguments, is that the excitations in this regime are
nonabelian anyons; but to the best of my knowledge a direct and explicit demonstration
of this is still lacking.7 In any case, this phase as it stands is useless for TQC, because in
view of the gaplessness of the excitation spectrum the usual arguments about protection
from indirect processes fail. However, it turns out that application of a magnetic field h
results in a gap of the form

∆ = const. hxhyhz/J
2 (41)

so that in principle TQC should be feasible.
Let’s now turn to possible physical implementations of the

Figure 14:

honeycomb model. One thing that is important to emphasize is
that neither the honeycomb geometry nor the association of the
spin-space component σi with a particular spatial direction i in
the plane (or indeed the interpretation of σ in spatial terms at
all) is in any way essential; the only things that are essential are
the topology of the lattice points and the association of these dif-
ferent Pauli-like operators with the three distinguishable links.
Unfortunately, it turns out that even with these relaxed condi-
tions no naturally occurring system is likely to have a Hamilto-
nian particularly close to that of eqn. (29); for example, in the
most obvious suggestion

(
graphene (honeycomb lattice) isotopi-

cally enriched with 13C
)

the nuclear dipolar interaction has a
quite different structure. Thus one turns to purpose-engineered
systems. While there have been various proposals in the liter-
ature of the last few years, the most promising seem to be (a)
optical lattices and (b) Josephson junction arrays. In the former
case8, it is proposed that one can create a honeycomb lattice of
optical wells by using three coplanar lasers, and then induce
a spin- and direction-dependent interaction between atoms in
neighboring walls by appropriately polarized further lasers. In

7Kitaev’s original argument on this point is based on the analogy with a (p+ip) Fermi superfluid, treated
in the mean-field approximation.

8L-M Duan et al., PRL 91, 090402 (2003)
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this way one would implement a “literal” version of the Kitaev
honeycomb model (except that the 2D “spin” space actually refers to two different atomic
hyperfine-Zeeman levels). The proposed (b) actually has two variants: in one of them9

(“JJ networks”) the superconducting wave function extends over the whole array and one
manipulates its topological properties, while in the other10 (“JJ arrays”) one envisages
individual Josephson systems (typically charge qubits) that are coupled through nonsuper-
conducting inductances, capacitances, etc.

Since it appears unlikely that any implementation, whether natural or purpose-engineered,
can exactly replicate the Kitaev honeycomb Hamiltonian (29), the question naturally arises:
how robust are the conclusions drawn for that model against perturbations that spoil its
simple structure, e.g. interactions of the form −Jxyσxi σ

y
j ? While one’s instinct is that

the basic results should not be affected provided that Jxy is much less than the original
energy gap ∆, to my knowledge there has been little quantitative study of this issue in the
literature to date.

9L. B. Ioffe et al., Nature 415, 503 (2002). The implementation proposed here is actually of the quantum
dimer model, which is similar but not identical to the Kitaev honeycomb model.

10You et al., arXiv:0809.0051.


