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Lecture 3 Single-particle QM in 1, 2 and 3D 

     Consider a single nonrelativisitic particle of mass m moving in d dimensions in a conservative, 
velocity-independent potential V(r). In stationary state it satisfies the TISE* 
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     The same equation applies to two particles of mass m1, m moving in a mutual potential V(r1 – r-2) 
provided that r is interpreted as the relative coord. r1 – r-2 (the COM wave function factors out) and m is 

replaced by the reduced mass   11 1
1 2m m

   .  We will consider for simplicity (in 2D and 3D) only 

the case of a central potential,    V V rr . (In 1D, analogous condition is V(x) = V(– x)) 

 

3D problems (recap) 

A. The bound-state problem 
 
We must solve the TISE (*) subject to the boundary conditions, which crudely speaking imply 

conditions (a)  (r) → 0 for |r| →  in any direction, (b) (r) cannot behave as negative power 

of r for (r) → 0 unless the potential is infinite at the origin (e.g.  – f ′n or Coulomb). The first 

condition evidently  E < 0. 
 
Standard procedure: separation of variables 

     ,i lmR r Y  r   

then the radial wave function obeys the differential equation. 
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If we introduce ( ) ( )r rR r   , then   satisfies the 1D-like equation 
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The boundary condition at  is simple (ℓ	ሺrሻ	→ 0); however, the boundary condition at the origin 

needs some care. If for example ℓሺrሻ → const. as r → 0, then R ℓ (r) ~ 1/r and derivative is 

discontinuous at r=0. This is allowed only for V(0) =  (i.e. -function). Thus, if V is finite at 

the origin ℓሺrሻ must tend to zero at least as r. This is actually assuped automatically for the case 

ℓ	 0 (since the asymptotic form is rℓ or r–ሺℓ൅1ሻ and the second must be excluded), but for the s-
wave case it must be imposed explicitly. Thus the case of s-wave scattering in a 3D central 

                                                      
* With b.e.’s: (a) single-valued (b) square – integrable (c) gradient continuous except at points where V infinite. 
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potential is not equivalent to a 1D problem with V(r)  V(x).  In particular, there is no general 
theorem that for a potential which is everywhere attractive, a bound state must exist; in fact, in 
specific cases (e.g. 3D square well) it is straightforward to show that the well must be of a certain 
minimum depth/entant to bind a particle. 
 

B. Scattering (e.g. LL* § 122) 

     Statement of problem: 

incoming wave ~ exp ikz  

We are interested in probability of observing scattered particle at 

 in direction (,ሻ. Apart from constant factor of k, this is prop 

to	|	|2	ሺr,	,		ሻ	for r  . Standard procedure: split wave 
function into partial-wave components: 

     m m m
m

c Y R r    


r   

then each partial wave satisfies (†) but now with positive E.   ԰2k2/2m;	if we choose z-axis 

along direction of incidence, then since potential is central, all terms with m ്	0 vanish and we 
are left with 

      
i

r c P R r            (‡) 

The functions Rℓሺrሻ	must satisfy the equation ሺ†ሻ, which for sufficiently large r (such that  

V(r)   are k2r2 ≫	ℓ	ሺℓ	൅	1	ሻሻ becomes simply 
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or in terms of   ( ),r rR r     
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The general solution is obviously an arbitrary linear combination of an outgoing wave eikr and an 
incoming one e–ikr. It is convenient to write this combination in the form 

      
2 1

sin 2r A kr
k

  


    
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 /             ( A  complex)   (§) 

        note !k    

                                                      
* Landau & Lifshitz, Quantum Mechanics, 1965 edition. 

z 



PHS598PTD   A.J. Leggett               2016 Lecture 3     Single-particle QM in 1, 2 and 3D          3 

 

where the overall magnitude takes care of the constant cℓ in (‡). Then the complete form of ሺrሻ 
in the limit r   is 
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However only part of this corresponds to the scattered wave. If we write 

    ikz
sce r  r   

then sc  must contain only an “outgoing” part (and this must be true for each  partial wave 

component separately). Now we have for r     

    cos 1
2 1 cos sin

2
ikz ikr L

Le c i P kr       
 




    

so this condition gives 
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   

and the coefficient of the ℓ–th outgoing partial wave is 

2 1if c     

Hence, finally, the complete outgoing wave has the form for r    
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and the scattered intensity is |f(ሻ|2.	

The total scattering cross-section 	is   2
f d  , thus     4
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Hence the phase shifts ( )i k     give complete information on the scattering. They are 

obtained by solving the complete equation, valid for all r, 
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subject to the boundary condition at r = 0, and matching to the asymptotic form (§) in the limit  

r    
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     A particularly interesting case arises when kro ≪ 1 where r0 is the range of the potential V(r). 

In this case, since Rℓ	~	ሺkrሻℓ for kr ≪	1, the partial waves with ℓ  0 never “feel” the potential 

and for them 0  . Thus the only relevant partial wave in the s-wave component. In this case it 

is easier to proceed as follows: Assume for the moment that the scattering is not too “strong” (see 

below), and consider the limit k  0.  There in the region kr ≪	1	but r	≫r0, the TISE reduces 

simply to the Laplace equation 2 	ൌ	0, and the most general form of the s-wave (spherically 
symmetric) solution is apart from normalization 

 	ൌ		ሺr ሻ	ൌ	1	–	as/r 

where as is defined as the zero-energy s-wave scattering length. It can be positive or negative.  
Under most circumstances, the value of |as| is comparable to the range r0 of the potential; 
however, close to the onset of a bound state it can be ≫	r0. In fact, as we approach the ground 

state from above, as  , and as we approach it from below (i.e. as the bound state rises into the 

continuum) as  + .  

     From the point of view of the scattering problem, a given value of as is equivalent to the effect 
of a -function pseudopotential 

   
22

ps sV r a r
m

 


  g r   

The simplest way to see this is to note that the general form of the s-wave solution of the zero-
energy TISE 
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2 sa r r
m m

  
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 
  

is precisely (constant – as/r), and we must fix the constant to give the right result for r ≫	as, so 

we recover the above form  ሺrሻ	ൌ	1	– as	/r.  It is also straightforward to show that the energy 
shift of a (low-energy) particle contained in a spherical box with a scattering potential near the 

origin such that the zero – E scattering length is as is just (2	԰2 as/m) |ሺ0ሻ|2. (where ሺ0ሻ is 

calculated in the absence of the potential.) Alternatively, we can say that in 3D, for a -function 

potential of strength g, the scattering length as 	g.  

     Finally, we note that from the above definitions as  fo and hence, by equation (‡) 

___________________   0 sk ka    

     (k  0) 
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1 dimension 

A. Bound states 
In 1D the TISE is simply 
 

2 2

2
( ) ( ) ( )

2
v x x E s x

m dx
 

 
   
 


  

We will not necessarily assume that V is parity-invariant (i.e. V(x) = V(–x)). The boundary 

conditions are that ሺxሻ is single-valued, square – integrable and has a continuous first derivative 
except possibly at points at where V(x) is infinite. The square integrability condition clearly 

implies that ሺxሻ	 0 as |x|  , which in turn implies E<0. 
 

     We will show that for any form of V(x) s.t. V(x)  0 everywhere, at least one bound state 
always exists. 
 
     Proof:  Consider some range R of x, say –a  < x < a, such that it is not true that V(x)=0 
everywhere in R. Construct the variational wave function 

  ,    x A x R     

  exp / 2 ,     x x a sgnx A x R        

. 

The normalization condition then  A = [2(a+ሻሿ–1/2. The expectation value of the energy of 
the above state is composed of potential and kinetic terms: since the potential contribution from 
x R  is negative (or zero) we have the upper limit 

 
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2
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/ 2           (*)
8 8
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 where 

 0

a

a
V V x dx


    

It is clear that however small |V0|, we can always find a value of  large enough that the RHS of 
(*) is < 0.  Thus at least one bound state always exists QED. 

     To see why an analogous result doesn’t follow in 3D, imagine imposing the condition that 

(x) vanish at some point, say x=0.  Then the minimum bending energy required within the 

range –a < x < a is of order A2  ԰2/2ma;	effectively this adds a constant a–1 to the –1, in the 
numerator of (*), and it can no longer necessarily be made negative. 

 [Problem on odd-parity state.] 
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Scattering 

     We consider scattering of an incident wave from – eikx, by a potential V(x) (not necessarily  
symmetric) which occupies a finite region of the x-axis around x=0. 

     Since in the potential-free region the solution of the TISE must satisfy 

  1/22 2 2 2/ 0        2 /d dx k k m      , the most general solution in that region is (since 

there is no wave incident from x=+ )  

 
  ,         0

                             > 0

ikx ikx

ikx

x e re x

te x

   


  

where r and t are the (complex) reflection + transmission coefficients. From the conservation of 
current it is clear that 

 
2 2

1r t    

We can also consider the case of a wave incident form +  in which case the reflection and 
transmission coefficients are defined to be r′ and t′ respectively. In fact, we can write down a 
“scattering matrix” 

  

 

S r t

t r

 

   
    

  

Since this matrix must be unitary (so as to preserve the normalization of an incoming arbitrary 
combination of eikx and e-ikx), we have SS† = 1, i.e. 

 
2 2 2 2

' ' 1t r t r       (as before) 

 / ( '/ ')*       ' ,    't r t r t t r r       

Note that the phase of t is physically meaningful (e.g. we could interfere the transmitted beam 
with one which has avoided the scatterer) but the phase of r is essentially a question of the choice 
of origin, so without loss of generality we can take r real. For a symmetric potential  
(V(x) = V(–x) we can take r = –r′* and t = t′*, so the problem is completely specified by the single 
complex number t. For the more general case, however, it may differ from t′ in phase (though not 
in amplitude) [Prob.] Evidently we can define a “scattering length” a by t = |t| eike. 

     It is interesting to study the special case of a -function potential, V	ሺxሻ	ൌ	g		ሺxሻ.	Recall that 

in 3D, for a potential g		ሺrሻ, we find a low-energy s-wave scattering length as = g/(2	԰2/mሻ.	
Now in 1D the dimensions of g are different (EL as opposed to EL3) so it is obvious on these 
grounds alone that the above relation does not hold. So what is the relation between g and a? 

We match the wave function itself at       
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x = 0 giving 

 r = t – 1 

Integration of the TISE across the origin gives 

      2

2
0 1 0

mg
x x c

x x x

                      
  

but 

       / 1 2 ( 1)     ,  0x ik t r ik t t            

so: 

    21 /ik t mg t     

  2

1

1 /
t

mg ik


 
  

(note 1

   and 0 as 0)

t

k

 

 
  

If we define “even” and “odd” scattering amplitudes by 

   ikz ikx ikx ikx ikx
x even odde f e e f e e           

then from 1 + r = t we have fodd = 0, 

 
2

1D

1 1
1

1
1

evenf t
ik ika
mg

   
 

  

where the “1D scattering length” a1D is defined by 

 
2

1Da
mg





   so a1D is inversely proportional to g and opposite in sign. 

(note that in the limit k  0 this agrees with our previous definition t = |t| eika) 

 Two barriers in series 

     It is worth discussing this problem here because it will be 
needed for the discussion of localization in lecture 4. 
Suppose that there are two distinct barriers separated by a 
region of zero potential (II); note that the length of II does 
not have to be large compared to the width of the barriers, all 
we need is to be able to define an “asymptotic” behavior. 

     Suppose a particle is incident from z = –  with momentum ԰k, i.e. the incoming wave is 
exp ikz. Then in the various V = 0 regions we have 

te
ikx

g (x) 

re
ikx

e
ikx

 

1 2 
I II III 

z 
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 I:   exp expz ikz A ikz      

 II:   exp expz B ikz C ikz     

 III:   expz D ikz   

so that the transmission coefficient is |D|2 and the reflection coefficient is |A|2. How are these 
quantities related to the reflection and transmission coefficients of the two barriers individually? 

To see this, we note that 

'
1 1

'
1 1

2

2

A r t c

B t r c

C r B

D t B

 

 



   

1

1 2

1 2

1

1 '

1 '

t
B

r r

t t
D

r r

 


 


  

 

The total transmission coefficient T12 |D|2 is therefore given (since |t1|2 = T1, |r′1|2 = R, etc.) by 
the expression 

 
12

1 2
2

1 21 '

TT
T

r r



  

In evaluating the quantity r′1r2, we must have in mind that it implicitly includes a phase shift , 
where  = ka, a being the difference between the “origins” chosen for behaviors 1 and 2. (Recall 

that the phase of r is a matter of convention which depends on this origin).  Thus, defining   2 

φ ൅ arg (r′1 r2) (where r′1 no longer includes the phase shift) we find  1 2 1 21 ' 1 ir r R R e     

and hence 

1 2
12

1 2 1 21 2 cos

TT
T

R R R R 


 
	

which is the required result.  Using the relations  1 1 1 1/ ' / *t r t r   etc., it may be verified with 

some labor that R12 = 1 – T12  

     Note that in the limit of large reflectance, T12 can actually be larger than 1 2TT  (cf. the situation 

in a Fabry-Perot etalon.) 
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2 dimensions 

Note that the problem of scattering (or bound states) in 2D is relevant not only to “truly” 2D systems, but 
to 3D ones with cylindrical symmetry (e.g. a charged particle in the field of a long straight charged wire). 
The 2D problem is considerably trickier than the 1 or 3D ones, in part because there is no limit which ic 
can be reduced to an essentially 1D one. 

The Schrödinger equation in polar coordinates r,  can b separated by writing 

(r) exp( ) R(r)in         n = -, 1, 2 … (but see below) 

The radial wave function now obeys 

2 2

2

1
( ) ( ) ( ) ( )

2 2
n

n n

dRd n
r r R V r R r ER r

m r dr dr mr
   

 
  

Unlike the case of 3D there is now no transformation which reduces this to a simple 1D TISE, even for 

n = 0. The most obvious substitution is 1/2( ) ( )n nr r R r  , but this gives 

 
2 2 2

2
2 2

1 ( ) ( )42 2n n n n

d
n V r r E

m dr mr
        

 
 

and no simple transformation will get rid of the ¼. 
 

However, it is amusing that we can cancel this term by application of an appropriate Aharonov-Bohm 

flux. Suppose the system is pierced by a thin tube containing a flux  such that no field leaks out into the 

region where the particle is. We describe this by a magnetic vector potential 


A( ) / 2r r   , and the 

effect is to replace –i / , in the angular part of the KE, by –i /  – (e/	԰ሻ	A	ൌ	i / 	(e/	hሻ	.	 As 
before, to ensure single-valuedness the angular wave function must be of the form eim, but now the 
associated KE is not n2	԰2	/	2mr2 but rather	ሺ԰2	/	2mr2) (n – /ሻ2,	where	 is the single particle flux 
quantum h/e. We see that if  is exactly half a flux quantum and n = 0, then the flux term exactly 
cancels the ¼ in (*) and we indeed get the simple “1D” form of the radial wave equation, just as in the 3D 
case. 
	

The theory of scattering in 2D can be analyzed similarly to the 3D case*. In this case the free-space 
solutions of the radial SE (*) are the Bessel and Neumann functions† Jn (k r), Nn (k r), and the appropriate 
circular expansion of an incoming wave is 

   

 exp exp ( )n
n

n

ikz i in J kr


 
∞

∞

  

                                                      
* S. Adhikari, Am. J. Physics S4, 362 (1985); M. Randeria et al. PRB 4. 327 (1990) 
† Abramowitz Stegun, Ch 9. The function Nn (*) is often identical Yu(x) and called a Bessel function of the same 
kind. 
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There is no great point in going through the details, but note that the S–wave phase shift 0(k) for k  0 
(which in 3D is kas and in 1D ka1D, cf. above) in 2D diverges logarithmically: 

 (2 )
0

1
(k)... ( )

2
D n ka


    

where a  is a characteristic length of the potential, which however should probably not be thought of as a 
scattering length. 

Bound States: We have seen that a purely attractive potential (or more generally one whose space 
integral is < 0) will always sustain at least one bound state in 1D, but not necessarily in 3D. What is the 
result in the 2D case? Because of the rather awkward properties of the Bessel and Neumann functions, it 
is actually easier to look at the problem in k–space rather than in r–space. The k–space form of the TISE 
is (in any dimension) 

 k k kk k
k

E V                      kk k kV V    

Let’s consider a very extended state, such that all k′ are 1
0r
 , the inverse range of the potential. Then 

we should be able to replace kkV  by the constant 0 ( )V V r dr   and the TISE reduces to  

 1
01 ( )k

k

V E      

It is clear that, whatever d, this equation has no bound state (E = 0) solution if 0 0V  . If 0 0V  , then 

everything depends on the density of states as k (or E)  0. The sum over k becomes in d dimensions 
( 2)/2d

dc d


 , where dc  is a constant; in particular 2 ( / 2 ).c m    Thus the TISE reads 

 
( 2)/2

01
d

dV c d
E


 

   

(for c, see below) 

It is clear that this equation always has an E < 0 solution for d = 1; for d = 3 it may or may not 
depending on the high energy cutoff c (which must be determined e.g. by the departure of k kV   

from constant value V0 and so is typically 2 2
0~ / mr ). For d = 2 a solution always exists, but the binding 

energy is exponentially small for  

V0   0: 

   2
0exp 1/ / 2cE mV      

(cf. the solution of the Cooper problem is superconductivity theory, which is formally identical to a 
simple 2D Schrödinger problem since the relevant density of states is similarly a constant.) 


