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Weak localization: Quantitative treatment
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Need to bear in mind:

(1) Generality of “WL” effect: localization of photons, phonons, etc. (any kind of wave
in disordered medium—Bergmann’s “shouting into the forest” example.)

(2) Dimensionality: Generally speaking, in any particular WL problem there will be 2
char. lengths: (i) the elastic mfp, l, which is usually only weakly T -dependent and
can range, typically, from a few Å to a few 1000 Å (ii) some ”phase-breaking length
Lφ, e.g., an inelastic length Lin or a “magnetic length” LM ∼

√
φ0/B. The phase-

breaking length can be � l. Most experiments which explicitly test theory of WL
done on thin wires or films, such that the “small” dimension d is � phase-breaking
length Lφ but usually� l; however, in the case of (e.g.) Si MOSFET’s, clearly d� l.
I will go through the theory explicitly for the former case, so that “locally” (on the
scale of l) the system looks 3D; the generalization to the case of a “locally 2D” (or 1D)
system is straightforward and mainly affects the dimensional and numerical factors.

(3) Until further notice electron-electron and electron-phonon interactions are neglected
except in so far as they give rise to “dephasing” collisions (see below). The effect of
e–e interactions, in particular, on WL is still highly controversial. (see Lecture 7)

(4) Generally speaking, the trajectories whose interference gives rise to WL effects extend
over distances ∼ Lφ. However, the actual change in the nonlocal conductivity σ(r, r′)
is confined to much smaller distances, . l; thus when measured over distances & l
(but � Lφ) the conductance will obey Ohm’s law.

(5) For a strictly translationally-invariant system (no impurities!) we can always choose
the single-electron energy eigenstates to be plane waves ψk(r) ∼ exp ikr, i.e. so
that they are not eigenstates of the time reversal operator T̂ , and T̂ψk is different
from ψk (though also an energy eigenfunction). In the presence of finite potentials
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this is in general not the case, so that strictly speaking we must choose the energy
eigenfunctions to be eigenstates of T̂ (we could, but need not, do this also in the
translational invariant case, e.g. coskr and sinkr. However, this effect is itself of the
order of the WL effect which we should calculate, so that when calculating “to zero
order in WL” it is legitimate to treat the (approximate) eigenstates ψi and T̂ψi as
different. In fact, it is legitimate to treat the ψi as semiclassical propagating wave
packets. For the moment we assume that time reversal is indeed a good symmetry of
the Hamiltonian, so that if ψi is an (approximate) energy eigenstate then so is T̂ψi,
with the same energy.

We start from the standard Kubo formula for the d.c. conductivity σ (not the conduc-
tance!) of an arbitrary system:

σ = lim
ω→0

lim
q→0

1

iω

δj(qω)

δA(qω)
= lim

ω→0
lim
q→0

1

iω
〈[jq(t), jq(0)]〉ω =

=

∫ ∞
0
dt

∫ ∫
dr dr′

V
〈[jα(rt), jα(r′0)]〉 (1)

where V = volume of system, α is a particular Cartesian component. In the following
it must be borne in mind that σ(ω) is real in the limit ω → 0 (which must be true for
any system which is not superconducting) only if the commutator 〈[jq(t), jq(0)]〉ω is pure
imaginary, in the limit ω → 0. The form of the current operator j(rt) in terms of the
single-particle wave functions ϕi(r) and energies εi is

jα(rt) =
∑
ij

a†iaj

(
− i~

2m
ϕ∗i (r)∇α ϕj(r)− c.c.

)
exp−i(εi − εj)t/~ (2)

When evaluated in thermal equilibrium, the expression for σ thus gives

σ =
∑
ij

fi(1− fj)
∫ ∞

0
dt exp−i(εi − εj)t/~ × (3)

∫∫
dr dr′

V

(
− i~

2m

)2 (
ϕ∗i (r)∇αϕj(r)− c.c.

)(
ϕ∗j (r

′)∇αϕi(r′)− c.c.
)

with fi the Fermi factor.
The occurrence of the gradient operators in those formulae is awkward, and we would

like to get rid of them. Consider the short-range (|r− r′| � l) contribution to the integral.
The time integration projects out all states except those for which εi is very close to εj . At
first sight this means that ϕj(r) is very “close” to ϕi(r), and they are both characterized
locally by some wave vector |k|n̂ where |k| ≈ kF. Thus the expression ϕ∗i (r)∇αϕj(r)− c.c.
can be replaced by 2kF n̂αϕ

∗
i (r)ϕj(r), and similarly for the r′-dependent term. Since the
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direction n̂α is random, the average of the quantity n̂2
α (which, remember is not summed

over α!) is 1/3. Thus, the short-range part of the “classical” contribution to σ (i.e. that
for which ϕi(r) and ϕj(r) are very close) is given by the expression (note ~kF/m ≡ vF!)

(σcl)s.r. =
∑
ij

fi (1− fj)
∫ ∞

0
dt exp−i(εi − εj)t/~ × (4)

1

3
vF

2

∫∫
|r−r′|.l

dr dr′

V
ϕ∗i (r)ϕj(r) ϕ∗j (r

′) ϕi(r
′)

≡ 1

3
vF

2

∫ ∫
|r−r′|.l

dr dr′

V

∫
〈[ρ(rt), ρ(r′0)]〉 dt ← χρρ(rr

′ : t)

It is necessary to emphasize that this is not the main contribution to σcl (this would
involve considering r− r′ & l); it is introduced only for pedagogic purposes.

Now comes the crunch: If we inspect the formula (3) for r′ → r, we see that there
is another important contribution, namely from those states for which not ϕj(r) but its
time-reverse ϕ∗j (r) is very close to ϕi(r). (Obviously, this is just a quantitative version
of the argument already used in L4.) Because the time reversal changes the sign of the
gradient, it brings in a − sign in the relation between the current and density correlations.
Thus, if we denote ϕ∗j (r) by ϕj(r) (remember, this is also an eigenstate of the Hamiltonian
with energy εj = εj and thus fj = fj !) we get for this “interference” contribution to σ (call
it δσ)

δσ =
∑
ij

fi(1− fj)
∫ ∞

0
dt exp−i(εi − εj)t/~ (5)(

−1

3
vF

2

)∫ ∫
drdr′ ϕ∗i (r)ϕ∗

j
(r)ϕj(r

′) ϕi(r
′)

≡ −1

3
vF

2
∑
ij

fi(1− fj)
∫ ∞

0
dt exp−i(εi − εj)t/~ ×∫∫

drdr′ ϕ∗i (r)ϕ∗j (r)ϕj(r
′)ϕi(r

′)

where in the last step we used the fact that the sum over j is just a relabelling of the sum
over j. For convenience let us define

Q(r, r′) ≡
∑
ij

fi(1− fj)
∫ ∞

0
dt exp−i(εi − εj)t/~ × ϕ∗i (r)ϕ∗jr)ϕj(r

′)ϕi(r
′) (6)

so that

δσWL = −1

3
vF

2

∫∫
drdr′ Q(r, r′) × e2 (7)
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Now comes the crucial step. It is clear that for r = r′ the quantity Q(r, r′) ≡ Q(r, r) is
just the classical response function

∫∞
0 〈[ρ(rt) ρ(r0)]〉 dt. As we go away from coincidence,

the quantity Q(r, r′) undergoes rapid phase oscillations, so that we expect that the integral
is equal to Veff〈[ρ(rt), ρ(ro)]〉 where Veff is the effective volume over which constructive
interference is maintained. What is this volume? For any given pair ϕi, ϕj with directions
n i,n j , , the phase will go through ∼ 2π if we go a distance of the order of kF

−1 along either
n i or n j . On the other hand, along the direction n̂i × n̂j the phase remains essentially
constant for a much longer distance, of the order of the elastic mfp l. Hence we expect

Veff = αkF
−2 l (8)

where α is some constant of order unity, and so

≡ χρρ(r = 0, t)

↓

δσWL = −1

3
vF

2 kF
−2l α

∫ ∞
0
〈[ρ(rt), ρ(r0)]〉cl dt × e2 (9)

where the subscript “cl” indicates that the commutator is to be evaluated in the classical
approximation, i.e. neglecting the interference effects specific to WL itself.

To get a feeling for the physical significance of eqn (9), we multiply and divide the RHS
by the static susceptibility χ0, which for a noninteracting gas is given (in 3D) by the DOS
k2
F /π

2~vF. Then denoting the quantity (dim L−dT−1) χ(r = 0, t)/χ0 by W (t), we have
(since D ∼ vFl)

∆σWL = const
e2

~
D

∫ ∞
0
dt W (t) (10)

The quantity W (t) is just proportional to the probability density at the origin, at time
t, of a particle which started at the origin at time zero. In a system described by simple
classical diffusion it is simply proportional to (Dt)−d/2; thus we see that in 1 or 2D the
integral diverges at long times, whereas in 3D it is finite.

We now evaluate the expression (9) for δσWL explicitly, using the hydrodynamic (dif-
fusive) form for the quanity χρρ ≡ 〈[ρ(rt), ρ(r0)]〉. In Fourier transformed form we have

χρρ(q, ω) = χ0
Dq2

Dq2 − iω
,

χ0 = static susceptibility

D = classical diffusion coeff.
(11)

and we remember that, since we know that the RHS of eqn. (9) is nil, we are allowed to
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take the imaginary part χρρ(q, ω) only. Thus we have∫ ∞
0
〈[ρ(rt), ρ(r0)]〉dt = lim

ω→0

L−d

iω
Im
∑
Q

χ0DQ
2

DQ2 − iω

= χ0 lim
ω→0

∑
Q

L−d

iω

iωDQ2

ω2 + (DQ2)2
= χ0L

−d
∑
Q

(DQ2)−1 (12)

(Qi ≡ 2π/L)

where the upper cutoff in the
∑

Q should be at ∼ l−1, beyond which the diffusive expres-
sions no longer hold. Hence

δσWL = −α 1

3
vF

2kF
−2lχ0L

−dD−1
∑
Q

Q−2 × e2 (13)

At this point we recall that whatever the overall dimensionality of the system, “at short
distances” (. `) it behaves essentially 3-dimensionally, so that on the RHS of eqn. (13)
we can use the 3D expressions for χ0 (namely k2

F /π
2~vF ) and for the (classical) diffusion

coefficient D (namely 1/3 ·vF `). Hence the dimensional factors reduce to −(α/π2)(e2/~).
A quantitative calculation gives α = 2π, and thus we finally get

δσWL = − 2

π

e2

~
L−d

∑
Q

Q−2 (14)

This is the general formula for the weak-localization correction to the conductivity for a
system with unbroken time-reversal invariance; it can be derived more quickly (but perhaps
less intuitively) by summing the so-called Langer-Neal (or “maximally crossed”) diagrams
in the Kubo formula for the conductivity.

It is remarkable that in the result (14) all the microscopic properties of the system (kF,
l, etc.) have fallen out (as has the temperature): in fact, apart from a numerical constant
the correction to the dimensionless conductance g is simply

∑
Q(QL)−2, which depends

only on the dimensionality of the system! In detail:

(a) in 3D the WL correction to σ is

δσWL ∼ −
e2

~

∫ l−1

0

d3q

q2
∼ e2

~
(l−1 − L−1) ∼ e2

~
l−1 (actually × π−3) (15)
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Comparing this with the Drude conductivity σcl ∼ (e2/~)kF
2l, we see that the relative

correction δσ/σcl is of order (kFl)
−2 and is independent of the sample dimensions.

(b) In 2D we have

δσWL ∼ −
e2

~

∫ l−1
d2q

q2
(16)

There is now formally a divergence for small q, which must be cut off at q ∼ L−1

where L is the sample dimension. Thus, δσWL ∼ (e2/~) ln(L/l), or putting in the
correct numerical factors

δσWL = − e2

~π2
ln(L/l) (17)

(c) Finally, in 1D we get

δσWL ∼ −
e2

~

∫ l−1

L−1

dq

q2
= − e

2

~π
(L− l) (18)

so that in this case the correction is no longer small as soon as L becomes comparable
to the elastic mfp l (as indeed we found earlier from the scaling analysis). [Note if
we define the dimensionless conductance g as that of a cube of side πL rather than
L, the prefactor is −e2/π2~ in any dimension.]

There is one tricky point about the above argument. We started off by considering the
behavior of the correlations entering the conductivity for short distances, |r − r′| . ` Yet
in evaluating the sum in eqn. (12) we limited ourselves to values of Q . `−1, i.e. in effect
to long distances! The logic behind this procedure may be seen by inspection of the figure
on page 7: the time-reversed paths which interfere must return to a point within (at most)
∼ ` of their origin, but in the process may travel distances � ` (and it is these “long”
paths which give rise to the divergences).

We now consider effects which may limit WL, and in particular may cut off the di-
vergences in 1 and 2D. At first sight, it is tempting to think that any effect which breaks
TRI will “spoil” the interference which leads to WL. However, this is not true when the
spin degree of freedom is involved, since TR reverses the spin whereas, to get interference,
the final spin of the electron must be independent of which of the two paths it travelled.
Let us for the moment assume there are no spin-dependent forces in the problem (these
will be taken up in the next lecture), and consider the effects which break the orbital TR
symmetry; i.e., destroy the possibility of constructing a linear combination of states ψi and
ψ∗i , which have exactly the same energy. There are two main classes of such effects:

(a) the (orbital effects of a) magnetic field, which has to be handled separately (see
below)

(b) inelastic or “phase-breaking” collisions.
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The reason why the latter tend to destroy WL is that they tend to correlate the states of
the electron to (mutually orthogonal) states of “something else” (phonons, other electrons,
. . . ), so that a linear combination of ϕi and ϕ∗i becomes

αϕi(r) + βϕi(r)⇒ αϕi(r)χi(ξ) + βϕ∗i (r)χi(ξ),

(χi(ξ), χi(ξ)) ≈ 0. (19)

Once this has happened irreversibly, the return probability density no longer contains an
interference term.

To estimate the order of magnitude of effect (b), it is sufficient simply to cut off the time
integral at an “inelastic (dephasing) time” τϕ which is the characteristic time for inelastic
collisions. Somewhat more accurately, one can assume that the classical return probability
W (t) is replaced by W (t) exp−t/τϕ ≡ W̃ (t) so that the corrected probability satisfies the
modified diffusion equation

∂W̃

∂t
= D∇2W̃ − W̃/τφ (20)

(where ∇2 denotes the d-dimensional Laplacian). Taking the Fourier transforms as above,
we find that the effect is to replace the quantity DQ2 by DQ2 + 1/τϕ thus, eqn. (14) is
replaced by

δσWL = − 2

π

e2

~
L−d

∑
Q

1

Q2 + L−2
φ

(21)

where the “phase-breaking length” Lφ is defined by Lφ ≡
√
Dτφ, i.e., it is the characteristic

distance that an electron diffuses in the time τφ. This then leads (up to a possible numerical
factor) to the replacement of the sample dimension L in the above expressions by Lϕ; e.g. for
2D

δσWL = − e2

~π2
ln(Lφ/l) (22)
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In general, we expect τ−1
φ (and thus L−1

ϕ , since D is usually not strongly T -dependent)
to depend on temperature and to vanish as T → 0. This statement is rather generic,
and depends only on the statement (a version of the 3rd law of thermodynamics) that the
available density of states for inelastic collisions tends to zero as T → 0. Suppose that τ−1

φ

vanishes as T p, p > 0. Then in 1D we find

δσWL ' −
e2

~π
Lφ(T ) ∼ T−p/2 (23)

and in 2D1

δσWL = − e2

π2~
ln(Lφ(T )/l) ∼ − e2

π2~
p ln

T0

T
(24)

(where T0 is defined by lnLφ(T ) ∼ l). Thus we expect a universal behavior δσ ∼ − ln(T0/T )
in 2D, i.e. the system tends continuously to insulating behavior as T → 0. The details of
the dephasing mechanism affect only the prefactor of the logarithm.

In general, we expect the phase-breaking rate τ−1
φ due to electron-phonon collisions to

vary as T 3 for T � θp (remember that the T 5 in the Bloch-Grüneisen law has an extra
power of T 2 because it is weighted by the directional factor (1− cos θ) which expresses the
effectiveness of the collision in destroying the electric current: no such factor enters τ−1

φ ,
since correlation of the electron state to that of any phonon, whatever its wavelength, is
effective in destroying phase coherence). Actually, the T 3-dependence is valid only down
to kBT ∼ ~c/l, i.e. in the regime where the relevant phonon wavelengths are much smaller
than the electron mfp: for still lower temperatures there is a crossover to a T 4 dependence.

If we think about inelastic collision processes in a fairly pure metal, then in addition to
el-phonon collision we have electron-electron collisions; these are usually not very effective
in degrading the electric current (because of the conservation of quasimomentum), but they
are perfectly effective in destroying the phase coherence of either of the electrons involved2.
In a pure metal the rate of such collisions is proportional to T 2, so at sufficiently low T
they would be more effective than the e-ph collisions. In fact, since we can estimate:3

τ−1
el−ph ∼ θD(T/θD)3, τ−1

el−el (pure) ∼ εF(T/εF)2 (25)

we get a crossover at a temperature ∼ θ2
D/εF, which is typically of the order of a few

degrees. Actually, it turns out that there is a complication: For a dirty metal the inelastic
electron-electron collision rate is not given by the standard T 2 dependence of FL theory,

1Since Lφ/l =
√
τφ/3τ elastic scattering rate, i.e.,

√
τφ/3τ , one often ignores the 3 and replaces lnLφ/l

by 1
2

ln(τφ/τ).
2We could, of course, take the view that the coherence has merely been shifted to the entangled state of

the two electrons, which exists in a configuration space of dimension 2d. However, for d > 1 the probability
of return in such a space is nondivergent and we would get at best a small finite correction to σ.

3These estimates are essentially dimensional in nature; in the case of the el− ph interaction we use the
fact that for T & θD, τ−1 ∼ kBT/~ × a coupling constant which is generally O(1).
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but is enhanced: in fact in d dimensions τ−1
el−el (pure) ∼ T d/2 (with logarithmic connections

in 2D). This enhancement comes about, crudely speaking, because the electrons travel
diffusively rather than ballistically and hence can spend longer close together (cf. lecture
7). Thus we expect that at sufficiently low temperatures τϕ is proportional to T d/2 (and
hence Lϕ to T d/4). The same result follows from a calculation of the phase-breaking due to
Nyquist noise (which of course is in the last resort due to the other electrons of the system).
In any case, the crucial point is that the generic structure of the relation δσ ∼ − ln(T0/T )
is preserved in 2D in the face of electron-electron collisions, and thus the system cannot be
a metal in the limit T → 0.


