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Effects of magnetic fields and spin

Now we turn to the effects of magnetic fields; we will concentrate on the orbital coupling,
since effects related to the Zeeman coupling are usually negligible. Of course, the effect
will depend on the geometry: for example, in a thin film (d � Lφ) we do not expect a
(weak) field parallel to the film to have much effect. In general, the effect of the field will
be to change the phase relation between the two time-reversed paths. A very spectacular
example of this effect occurs in a cylindrical geometry with the magnetic field applied
(ideally under Aharonov-Bohm conditions) along the cylinder axis (the conductivity
is also measured along this axis). In this geometry, the effect of the magnetic field
is to add to paths which go around the cylinder an extra phase e

∮
A · dl, which is

2πn(Φ/Φ0)(Φ0 ≡ h/e) for a path circling the cylinder n times in a clockwise direction
(anticlockwise paths contribute with a negative value of n). Thus, if there were no
inelastic dephasing, the effect would be to multiply the total return amplitude coming
from a pair of time-reversed paths (n,−n) by the factor cos 2πnΦ/Φ0. In practice, the
interference of a paths with given n will be attenuated, owing to inelastic dephasing,
by a factor exp−2πnR/Lφ(T ). In any case, since the corresponding contribution to the
return probability (and hence δσ) is proportional to cos2 2πnΦ/Φ0 ∼ 1 + cos 4πnΦ/Φ0,
one expects to see an oscillation in the magnetoresistance with a period Φ0/2, i.e. h/2e.
This is quite different from the effects associated with the simple AB effect, which gives
a periodicity h/e. Moreover, we expect these oscillations to start to appear when Lφ(T )
becomes comparable to the circumference 2πR of the cylinder and to sharpen with
decreasing temperature. This is just what is seen experimentally.

In the case of a bulk geometry things are more complicated, but the general pattern
of the effect of a magnetic field can be seen by the following simple argument: Although
there is no unique relation between the time taken by an electron to return to the origin
and the area normal to the magnetic field enclosed by its path, the “typical” distance
to which it has migrated in time t is of order

√
Dt and the area enclosed thus πDt; the

flux inclosed is thus πBDt, so that the interference factor is

cosφ(t) ∼ 2π πBDt/Φ0 ≡ cos
(
2π2eBDt/h

)
(1)

Thus, there is a characteristic time associated with the field:

τH ∼ (h/e)/(πDB) (2)

Thus, the integral of W (t) in our integral for δσ (eqn. (10) of lecture 5) should be
replaced by (something like) ∫ ∞

0
dtW0(t) cos 2πt/τH (3)

where W0(t) = (Dt)−d/2 is the classical return probability. It is clear that the qualitative
effect of this factor is to cut the integral off at a value∼ τH (and this effect survives a more
rigorous treatment in which the different possible “shapes” of the orbits are properly
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taken into account). Equivalently, we can say that the effect is, at least qualitatively,
to replace the spatial cutoff L by a “magnetic length” LM defined to be equal to1

(Φ0/2πB)1/2.
Suppose now both the magnetic-field effect and the inelastic dephasing effect are

present, and both the relevant lengths are � the sample size L. Then, qualitatively
speaking, if say Lφ � LM than we would expect Lφ to dominate the behavior, which
should be insensitive to LM, and vice versa. Thus we expect that as a function of field
at fixed temperature (hence fixed Lφ) the resistance should initially be flat, but should
start to decrease (“negative magnetoresistance”) as soon as LM ∼ Lφ, and for large fields
(LM � Lφ) should be a function only of field and independent of T . Specifically, in 2D
we expect

δσ = − e2

π2~
ln
(
Lφf(Lφ/LM)/l

)
(4)

where the function f(x) (which we would of course need a more quantitative calculation
to determine in detail) tends to 1 for x � 1 and to x−1 for x � 1. Provided that the
experimentally obtained δσ (or equivalently δR) indeed satisfies a scaling equation of
the form (4), it follows immediately that we can use the scale of the observed magne-
toresistance as a direct measure of the dephasing (“phase-breaking”) length Lφ(T ), and
by varying the temperature find its temperature-dependence. This is taken up in the
next lecture.

Spin effects in weak localization

So far we have ignored the spin degree of freedom of the electron, assuming that the spin
is conserved throughout the relevant trajectories. But in fact, in a realistic sample we
may have both spin-orbit scattering and spin-dependent scattering by static magnetic
impurities. Both of these processes are typically very weak compared to the elastic
scattering rate τ , but need not be small compared to the phase-breaking rate τφ, so they
need to be taken into account. In fact the results are quite surprising, especially in the
spin-orbit case. Consider this case first.

When an electron is scattered by an atom at R0
i from a state k into state k′, the

matrix element has the general form (in the tensor product orbital-spin space)

M = (Vk−k′ 1̂ + Ṽk−k′ ik× k′ · σ̂)(× something depending onR0
i ) (5)

where the second term expresses the effect of the spin-orbit interaction and generally
has Ṽk−k′ � Vk−k′ . Because of this, the effect of spin-orbit term on the orbital motion
may be neglected, so that we consider k and k′ as fixed vectors; thus, intuitively, the SO
interaction resembles a random magnetic field acting on the spins. However, it is crucial
to appreciate that in the time-reversed trajectory the vectors k′ and k are interchanged
for every scattering event; thus the quantity k × k′, i.e. the “effective magnetic field”

1Or some number of order 1 times this. (There seems to be no standard definition in the weak-
localization context: in the theory of quantum Hall effect the standard definition is LM ≡ (~/eB)1/2 ≡
(Φ0/2πB)1/2.
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changes sign on the reversed trajectory; although the SO interaction is invariant under
reversal of both the orbital and spin coordinates, it is not invariant under reversal of the
orbital ones alone. As a result, if the electron spin undergoes some sequence of processes
on the original trajectory, it will undergo the same sequence on the opposite trajectory
but in the reversed direction, so that in general the spin states |σ〉, |σ′〉 at the end of the
day would be different on the two trajectories (but not in general opposite). Since the
interference term is proportional to the spin-space overlap 〈σ|σ′〉, one would think at first
sight that the effect of SO interactions would be similar to those of inelastic collisions,
i.e. they would tend to destroy the constructive interference responsible for WL, in effect
adding an extra term to the dephasing rate τ−1φ . Moreover, supposing for the moment
that they are the dominant effect in this rate (as should happen for sufficiently low T ,
see L. 5) one would predict that just as in the case of inelastic collisions the application
of a magnetic field such that τM . τφ would tend to suppress the WL effect and increase
σ (decrease the resistance) relative to its zero-field value.

The actual situation is much more interesting.2 The first important consideration is
that when the spin wave function of a spin-1/2 processes through an angle φ, it acquires
a relative phase3 of φ/2, not φ. Hence, if for example we compute spin states which
have been each rotated through π around the same axis but in opposite directions, their
relative phase is now π rather than 0, and thus, if such an “effective π/2” rotation were to
occur for a relevant trajectory, the effect would be to make the interference term between
the original and time-reversed trajectories negative. Now at first sight one would think
that since the amount of rotation is “random”, positive interference would tend to occur
at least as often as negative, so that one would not get a destructive effect on average.
Formally, if we assume that we can treat the rotation angle as a simple 1D variable
whose values are Gaussianly distributed, with mean square value φ20, then we have for
the average value of the interference term cosφ/2

cosφ/2 =
1√

2πφ0

∫ ∞
0

cosφ/2 exp−φ2/φ20 dφ ∼ exp−φ20/4 (6)

which simply decreases monotonically from 1 (the constructive interference limit) to
zero as φ0 increases. Thus, one would still reach the conclusion that the effect of SO
interactions is, at least qualitatively, similar to that of inelastic collisions. This conclusion
is in fact correct when the SO scattering is effectively 2D, as in Si MOSFET’s.

What this argument misses is that the spin is actually a three-dimensional variable,
and moreover the random “field” acting on it can, at least in the most common case
when the film thickness d is � l, lie in an arbitrary direction in 3D space. As a result
of this, the direction of the spin diffuses randomly on the unit sphere, and after many
scatterings (τ � τSO) it is equally likely to lie anywhere. Now it is very tempting to
argue as follows: The overlap of the two arbitrary spin state should be defined, up to an
overall phase factor, by cos θ/2 where θ is the angle between them. But θ/2 is just the

2The wording of the heading of Chakravarty and Schmid §10 “Destruction of phase coherence by SO
and spin-flip scattering” seems to me very misleading.

3This effect has been spectacularly confirmed in neutron-interferometry experiments.
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angle made by one of the spins with the original axis, and the average of its cosine over
the sphere is obviously zero. Hence for τ � τSO the average of the overlap (interference
term) should be zero, as previously obtained. But this conclusion is wrong ;4 it neglects
the interplay between the relative direction and the relative phase of the two spin states.
In fact, the required quantity (see below) is 1

2Tr R̂2 where R̂ is the total rotation matrix
applied to a single spin. If we express this in terms of the standard Euler angles φ, θ, ψ
is has the form (unitary but not Hermitian)

R̂ =

(
cos θ2 e

i(φ+ψ)/2 i sin θ
2 e
−i(φ−ψ)/2

i sin θ
2 e

i(φ−ψ)/2 cos θ2 e
−i(φ+ψ)/2

)
(7)

and so it is easy to show that

1

2
Tr R̂2 = cos2

θ

2
cos(φ+ ψ)− sin2 θ

2
(8)

If the Euler angles θ, φ and ψ are assumed to be uncorrelated and random, then the
first term averages to zero and 1

2TrR2 is just the average of sin2 θ/2 over the unit
sphere, i.e. −1/2! Thus spin-orbit scattering tends, even in the strong-scattering limit,
to decrease the density at the origin below its classical value and hence to increase the
conductivity. This behavior is sometimes called “weak antilocalization”.

There is one subtlety about the above argument that needs comment: It is assumed
that the spin rotations occurring on the time-reversed path occur in reverse order to
those occurring on the original path. This means that if the total rotation on the original
path is specified by Euler angles (φ, θ, ψ) than that on the reversed path is specified by
angles (−ψ,−θ,−φ) (not (−φ,−θ,−ψ)!). Thus, if the initial state is |0〉 we have for the
final states |σ〉d, |σ〉r

|σ〉d = R̂(φ, θ, ψ)|0〉, |σ〉r = R̂(−ψ,−θ,−φ)|0〉 (9)

and thus the overlap (interference) factor 〈σr|σd〉 is given by

I ≡ 〈σr|σd〉 = 〈0|R̂†(−ψ,−θ,−φ)R̂(φ, θ, ψ)|0〉 = 〈0|R̂2(φ, θ, ψ)|0〉 (10)

Taking the trace over two orthogonal possibilities for |0〉, we recover the result I = 1
2Tr R̂2

as stated.5

We now turn more briefly to the question of the effect of magnetic impurities. We
represent these by an effective interaction of the form

Ĥmagn = −
∑
i

JiSi · σ (11)

4G. Bergmann, Solid State Communications, 42, 815 (1982). Beware numerous typos in the derivation
on p. 816!

5It is necessary to emphasize that we cannot simply add the effects of elastic and SO scattering: For
long enough paths (L & LSO) the combined effect is the SO one.
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where the position Ri and direction of the various fixed spins (as well as, possibly, the
interaction strength Ji) are random and uncorrelated. We will treat the fixed impurity
spins as classical, so that the effect is, again, to provide a set of “fields”, random in
magnitude and direction, which act on the spin of the diffusing conduction electron.
There is now a crucial difference with the SO problem, in that while the various fields
again act in reverse order on the direct and time-reversed paths, they rotate in the
same direction. Thus a single impurity spin would give no effect at all (i.e. whatever
interference term was originally there would remain, since |σ〉 and |σ′〉, while not equal
to |0〉, are identical). Any effect must come entirely from the non-Abelian structure of
the relevant group (SU(2)), i.e. the fact that rotations do not in general commute. Thus,
one expects that the effective spin-flip scattering time should be larger than the actual
life time against spin-flip scattering, which is

1

τsf
=

2π

~
dn

dε
nimpJ

2〈S2
imp〉 (12)

but it is in general of the same order of magnitude. The qualitative effect of spin-flip
scattering is similar to that of inelastic collisions. (Cf. Problem 2.1)

We have now considered the effect on weak localization of four different processes:
inelastic collisions, the orbital effect of an external magnetic field, spin-orbit coupling
and spin flip by static impurities. In practice all four may be simultaneously present,
and the exact general formulae have to be expressed in terms of the so-called digamma
function Ψ(x) (in the 2D case) and look rather messy (see e.g. Bergmann, op. cit.,
eqn. (3.32)). However, in certain limits they simplify considerably. In the following I will
for convenience neglect spin-flip scattering (as mentioned, its effect is not qualitatively
very different from that of inelastic collisions, the main difference being that it is not
appreciably temperature dependent and may be the dominant “phase-breaking” effect
at T → 0). I will also assume that all relevant lengths (Lφ, LM, LSO . . .) are large
compared to the elastic mean free path l. [It should be emphasized that the condition
LSO � l is not necessary, and Bergmann discusses also the opposite case]. Under these
conditions the basic principle is quite simple: Elastic scattering contributes positively
to WL, starting at length scales ∼ the elastic mean free path l. Similarly, spin-orbit
scattering contributes negatively, and in this case the smallest relevant paths are those
on a length scale LSO. At the upper end, both these effects will be cut off at the length
scale at which phase coherence is destroyed; this is generally the smaller of the inelastic
(phase-breaking) length Lφ and the magnetic length LM. Below, I will generally quote
the results for the 2D case, which has been most extensively investigated experimentally;
the results in the 1D case are similar, with the ln’s replaced by a linear dependencies
(i.e. ln a/b → a− b).6

Consider first the case of zero magnetic field (LM →∞). Then apart from the elastic
mean free path l, there are two characteristic lengths in the problem, namely the inelastic
(phase-breaking) length Lφ and the spin-orbit length LSO. In the limit LSO � Lφ it is

6In the 2D case it clear that, whenever we have a ln with a large argument, a more exact calculation
may add a constant term but will not change the argument of the logarithm.
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clear that the spin-orbit effect is irrelevant, and the WL correction to the Boltzmann
conductivity has the simple form

∆σ = − e2

π2~ lnLφ(T )/l < 0
[
or − e2

2π2~ ln τφ/τ < 0
]

(13)

Although we do not know the Boltzmann conductivity accurately enough to measure the
absolute value of ∆σ, we should be able to see the predicted logarithmic temperature
dependence.

The opposite limit, LSO � Lφ(T ) (which should be attainable at sufficiently low
temperatures, since LSO is nearly temperature independent while Lφ(T ) diverges) is
more interesting. In the range of path lengths between l and LSO, the effects of the
SO interaction can be neglected and the contribution to ∆σ is −(e2/π2~) lnLSO/l ≡
−g̃0 lnLSO/l. In the region between LSO and Lφ(T ), the combined effects of elastic and
SO scattering are “antilocalizing” and contribute to ∆σ an amount +1

2 g̃0 lnLφ(T )/LSO.
Consequently, the complete correction to the Boltzmann conductivity has the form7

∆σ =
1

2

e2

π2~
ln
(
Lφ(T )l2/L3

SO

)
(14)

and is positive or negative depending on whether Lφ is not only� LSO but> LSO(LSO/l)
2,

a much more stringent condition. (However, the coefficient of lnT is always negative).
Now consider the effect of a magnetic field. Since the corresponding LM acts as an

upper cut off on the length of the paths which contribute to weak (anti-) localization,
competing in that respect with Lφ(T ), we can see at once that if LM � Lφ(T ) (H → 0)
everything should be independent of H. The opposite limit is more interesting: in this
case we can simply replace Lφ(T ) in the above formulae by LM, and then consider the
effect of varying H (i.e. LM). Thus, consider

(a) LSO � Lφ(T ). In this case LSO is completely irrelevant, and we get:

for Lφ(T )� LM, ∆σ = (−e2/π2~) lnLφ(T )/l

for Lφ(T )� LM, ∆σ = (−e2/π2~) lnLM/l

Thus, for small H the resistivity should be approximately independent of H,
while for large H it should decrease as const− lnH. The crossover should be
T -dependent, occurring when LM ∼ Lφ(T ) and thus at smaller and smaller values
of H as T decreases. Of course, to obtain the exact behavior as a function of H in
the crossover region one needs a more quantitative calculation.

(b) LSO � Lφ(T ). This case is even more interesting. Recall that the contribution
to weak localization from orbits with length scales between l and LSO is positive
(contribution to ∆σ negative), while for paths between LSO and the upper cutoff
the contribution is negative. Substituting LM for Lφ(T ) in the formulae (13) and

7Eqn. (10.17c) of Chakravarty and Schmid appears to be missing a factor of 1/2 in the prefactors.
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(14) above we find:

∆σ = − e2

π2~
lnLM/l (Lφ �) LM � LSO (15)

∆σ = +
1

2

e2

π2~
ln
(
LMl

2/L3
SO

)
LM � LSO (� Lφ) (16)

and as before,

∆σ = − e2

π2~
lnLφ/l Lφ � LM (17)

(Note that (15) and (16) coincide when we set LSO = LM). Translating into
expression for the change in resistance ∆R and recalling that LM ∝ H−1/2, we
see that when plotted against lnH ∆R should initially be flat, than increase until
(roughly) LM ∼ LSO, and finally decrease again, eventually possibly falling below
the H = 0 value. [Problem]

We will now examine how well the above predictions agree with experiment, restrict-
ing ourselves for the moment to the situation before ∼ 1995 when it started to get much
more cloudy. It should be emphasized that the theoretical predictions above completely
neglect the possible effects of el-el interactions, except in so far as they may contribute
to τ−1φ ; these are still somewhat controversial and will be taken up in L. 7, so it is inter-
esting to enquire how well the “naive” theory works. A fairly complete account of the
comparison of theory with experiment (as of mid-80’s) can be obtained by combining
Bergmann, sections 5 and 6 and Lee and Ramakrishnan section VI.

While there are some experiments on quasi-1D wires, most of experiments which have
attempted to test WL theory quantitatively have been on quasi-2D systems, either Si
MOSFET’s, or disordered (quenched or sputtered) thin films. In both cases the “initial”
(Boltzmann) R� values are usually such that the relative effects of WL are of order
10−2−10−3. Thus it is hopeless to try to compare the absolute value of ∆R with theory
(since we certainly do not know the Boltzmann value to this accuracy); what one studies
is

(a) the qualitative features and

(b) the quantitative dependence of ∆R on temperature and magnetic field.

From the qualitative point of view, the most dramatic confirmation of the general
ideas of WL theory is the experiment of Sharvin and Sharvin.8 They measured the
resistivity, in the longitudinal direction, of a thin cylindrical film of Mg deposited on a
quartz filament as a function of magnetic field and thus of the flux through the cylinder.
The base resistance of the film was ∼ 10kΩ, and the field-dependent part at low (. 50 G)
fields ∼ 1 Ω, so 1 part in 104. In addition to a term in R which increased linearly with
field, they observed oscillations which had a period Φ0/2 where Φ0 is the single-electron

8JETP Letters 34, 272 (1981).
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flux quantum h/e; thus, they cannot be due to the simple AB effect, which would give
a period of Φ0.

With regard to measurements of “bulk” thin films, one should distinguish between
the effects of magnetic field and temperature. In many cases, the predictions for the
dependence of the resistance on magnetic field at constant T is essentially perfect; that
is, once one has fitted the (constant) values of one or a few parameters (Lφ, LSO, possibly
the spin-flip scattering length), the theoretical curves go right through the experimental
points: see e.g. Bergmann section 5. Particularly impressive is the way in which the
curves change from monotonic to nonmonotonic as heavy impurities like Au are added,
indicating the effect of spin-orbit scattering. Another, qualitative, confirmation of the
essential concepts of the theory is that the effect of a magnetic field in the plane of the
film is much less than that of one normal to the plane.

With regard to the dependence on temperature the situation is less clear-cut. The
first possibility is to look for the explicit temperature dependence of R in zero magnetic
field. While the predicted behavior ∆R ∼ lnT is indeed seen experimentally, this is
not unambiguous evidence for WL effects because it turns out that a quite independent
mechanism based on interactions can give the same prediction (see LR section III.D, and
lecture 7). Consequently, a more indirect method of obtaining τφ is more favorable. If one
assumes that the temperature-dependence of the phase-breaking length Lφ(T ) (hence of
corresponding time τφ(T ), which is proportional to L2

φ(T ))) can indeed be obtained by

fitting the magnetoresistance to the theoretical curves, and write τφ(T ) ∝ T−p, then the
exponent p seems to vary considerably between materials and sometimes even between
different experiments on the same material; generally speaking it seems to fall in the
range 1 − 2. This is perhaps not too disturbing, since while the phonon contribution
to τ−1φ is predicted to be proportional to T 3 (or T 4 at the lowest temperatures) the
contribution of el-el scattering, in a dirty metal which is “3D” as regard this scattering
is predicted to be proportional to T 3/2, see L. 7. In a few cases, τφ flattens off to
a constant value at low T ; this is what is to be expected if the inelastic length Lsf
associated with the other possible phase-breaking mechanism, namely static magnetic
impurities, and in most of those cases it seemed plausible to attribute the flattening to
the presence of a small but nonzero concentration of such impurities.

Finally, as noted, there are a few experiments on 1D systems which try to probe WL.
Recall that the 1D prediction is

∆σ = − e
2

π~
(L̃− l) (18)

where of course the term in l cannot be obtained experimentally; here L̃ is the smaller of
the actual length of the sample and the phase-breaking length. Thus one would predict
that Ohm’s law (that is, R ∝ L) should hold for long wires but not for short ones, with
the crossover being temperature dependent; this qualitative effect is seen, though it is
not clear that there is quantitative agreement with the theory. Note by the way that the
“σ” in the above formula is the 1D conductivity (i.e. total wire current/voltage gradient),
so that if we infer from this the usual 3D bulk conductivity the latter contains an extra
explicit factor of 1/A. This dependence has been seen experimentally (LR, loc. cit.).
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In conclusion, up to around 1995 the situation with regard to the comparison of WL
theory with experiment was crudely that there was overall qualitative agreement and in
some cases even spectacular quantitative agreement, and that there were essentially no
experiments which seemed impossible to reconcile with the theory. As we will see later
in the course, the last few years have brought a dramatic change in the situation.


