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Effects of interactions in a disordered system

The effects of the Coulomb and electron-phonon interaction in disordered systems, even
where the disorder is “weak,” is still a controversial subject. Here I will try to summarize
the understanding that was obtained in the early and mid-80s, which appears to fit most
of the pre-1997 data at least qualitatively. Although the electron-phonon interaction is
believed to be very important in some disordered semiconductors1, it appears to be much
less so in disordered metals, so I will concentrate here on the effects of the Coulomb
interaction. It will always be assumed that we are in the “weak-disorder” limit kF l� 1.

The first point to make is that under this condition the static screening of the Coulomb
interaction at long distances (small q) is likely to be essentially the same as in a 3D pure
system. The reason is that the scale k−1

FT of the screening cloud is so small (typically of the
same order as k−1

F ) that at these scales the system is “locally” effectively 3D2, and moreover
since the scale is� l the system should not know about the disorder in this context. Thus
we should be able to replace the long-wavelength (q � k−1

F , l−1) spatial components of
the static Coulomb interaction by a constant (the inverse “neutral” (3D) compressibility
χ−1

0 ). Moreover, since the characteristic frequencies involved in the screening process are
of order of the (3D) plasma frequency ωp(∼ a few eV), this effective interaction should be
independent of frequency on the scales (at most of the order of the inverse elastic collision
time τ−1) which we will be interested in below. Thus, in the following, I will set Veff

(q, ω) = const. for the q and ω of interest.
In considering the effects of interactions in disordered systems, it is at first sight tempt-

ing to argue as follows: For a noninteracting degenerate system of electrons, the presence
of (weak) disorder has little affect on the single-particle density of states (DOS) near the
Fermi surface, and thus on properties such as the specific heat, compressibility and Pauli
spin susceptibility. On the other hand, for a pure (non-disordered) system we know that (as
long as no phase transition such as superconductivity sets in) the effects of the interactions
can be handled by the Landau Fermi-liquid theory (or more precisely by the Landau-Silin
generalization, which takes into account the long-range Coulomb force), and while they
change the numerical coefficients (e.g. m→ m∗) do not affect the qualitative behavior (in
particular, the DOS remains approximately constant). Thus, we should expect that also in
a disordered interacting system the same qualitative result would hold (DOS ∼ constant,
so cv ∼ T etc.). This does indeed appear to have been the general assumption for nearly
a quarter-century following Landau’s original work. Interestingly, as first clearly appreci-
ated by Altshuler and Aronov in 1979, it is false: while neither disorder nor interactions
individually change the qualitative behavior, the combination does!

To see the reason, it is convenient to start by relating the decay rate Γ of a quasiparticle
close to the Fermi energy to the density-density correlation function χρρ(qω) (hereafter
simply χ(qω)). We will work in the basis of the exact single-electron energy eigenfunctions

1See e.g., P. C. Taylor, J. Noncrystalline Solids, 352, 839 (2006), section 5.
2This point may have to be re-examined in the context of Si MOSFETS, etc.
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i in the absence of interaction (thus, in the absence of interaction Γi is trivially zero). The
energy of the state i relative to the Fermi energy will be denoted εi and its Schrödinger
wave function ϕi(r). The single-particle DOS (of both spins) close to the Fermi energy,
calculated in the absence of interactions, will be denoted dn/dε; as noted, it is constant
and approximately (i.e. to o(k−1

F ) close to that of the pure metal. For simplicity I do not
include the spin degree of freedom explicitly below, but it is straightforward to include it
(at least in so far as the effective potential Veff is spin-independent). Obviously the pure
metal is a special case of the formalism to be developed below, with ϕi(r) = V −1/2 exp iki ·r
(V = volume of system).

Let’s consider a state i, for definiteness with εi > 0. In second-order perturbation theory
the expression for its rate of decay Γi, which is of course entirely due to interactions, is

Γi = (2π/~)
∑
l,m,n

∣∣∣∣∫∫ dr dr′ϕ∗i (r)ϕl(r)Veff(r− r′)ϕ∗m(r′)ϕn(r′)

∣∣∣∣2
× fm(1− fl)(1− fn)δ(εi + εm − εl − εn) (1)

where fm ≡
(

exp(βεm) + 1
)−1

is the Fermi function. Intuitively, at T = 0 eqn. (1)
describes a process in which the electron in state i knocks one in state m out of the Fermi
sea (i.e. creates a hole in state m), the two outgoing electrons having energies εl, εn > 0.
It turns out to be convenient to study, rather than Γi itself, the quantity

Q(ε) =
∑
k

Γkθ(εk)θ(ε− εk) (2)

i.e. Q(ε) is the sum of the decay rates of all electron states with energies less than ε. We
now substitute (1) into (2) and use the identity

δ(εk + εm − εl − εn) ≡
∫
dω δ

(
ω − (εk − εl)

)
δ
(
ω − (εn − εm)

)
(3)

thus obtaining

Q(ε) = (2π/~)
∑

k,l,m,n

∫
dω

∣∣∣∣∫∫ dr dr′ϕ∗k(r)ϕl(r)Veff(r− r′)ϕ∗m(r′)ϕn(r′)

∣∣∣∣2
× fm(1− fl)(1− fn)θ(εk)θ(ε− εk)δ

(
ω − (εk − εl)

)
δ
(
ω − εn − εm

)
(4)

The result (4) is exact within second-order perturbation theory.
At first sight, the expression (4) does not seem to be related to anything familiar.

However, we now carry out a little trick3. Write Q(ε) formally in the form

Q(ε) ≡
∑
kl

θ(εk) θ(ε− εk)(1− fl)
∫
dω Φkl(ω) δ

(
ω − (εk − εl)

)
(5)

3A very similar trick is routinely carried out in the discussion of the onset of superconductivity in
disordered metals, see e.g. de Gennes, Superconductivity of Metals and Alloys, pp. 215–7.
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The dependence of Φkl(ω) on k and l is only through the product of wave functions
ϕ∗k(r)ϕl(r) in the matrix element. The crucial observation, now, is that in the noninter-
acting picture that we are using as a basis, there is nothing in any way “special” about
the states that happen to lie close to the Fermi energy, and thus we should expect that,
at least when averaged over a nonzero but small energy range, the quantity Φkl(ω) should
not be a function of εk and εl separately, but only of the difference εk− εl, and moreover is
symmetric under the exchange k � l., Thus, performing the sum over l in (5) and setting
Φ(εk − εl : ω)εk−εl=ω ≡ Φ(ω) , we can write (

∑
k →

dn
dε

∫
dε, etc.)

Q(ε) =

(
dn

dε

)2 ∫ ε

0
dε′
∫ ∞
−∞

dω
(
1− f(ε′ − ω)

)
Φ(ω) (6)

Let us now compare expression (6) with the expression

Q̃(ε) ≡
∫ ε

0
dω
∑
kl

fl(1− fk) δ
(
ω − (εk − εl)

)
Φkl(ω)

=

(
dn

dε

)2 ∫ ε

0
dω

∫ ∞
−∞

dε′ f(ε′ − ω)
(
1− f(ε′)

)
Φ(ω) (7)

Consider the limit T → 0, so that 1−f(ε)→ θ(ε). Then the expressions (6) and (7) reduce
after integration over ε′ respectively to

Q(ε) =

(
dn

dε

)2 ∫ ε

0
(ε− ω)Φ(ω)dω + εI, I ≡

∫ 0

−∞
Φ(ω)dω (8)

Q̃(ε) =

(
dn

dε

)2 ∫ ε

0
ωΦ(ω)dω (9)

From the consideration of the factor fm(1 − fn)δ(ω − (εm − εn)) in Φ(ω) we can argue
that at T = 0 Φ(ω) ≡ 0 for ω < 0, hence I = 0. Thus Q(ε) and Q̃(ε) differ only by the
factors of ε− ω and ω, respectively, in their integrands; for any simple power-law form of
Φ(ω) this difference will contribute a calculable numerical factor α ≡ Q(ε)/Q̃(ε) which is
independent of ε.

Thus, we can write (at T = 0)4

Q(ε) = α · (2π/~)

∫ ε

0
dω
∑
klmn

∣∣ ∫∫ dr dr′ϕ∗k(r)ϕl(r)Veff(r− r′)ϕ∗m(r′)ϕn(r′)|2

×
{
fl(1− fk)fm(1− fn)δ

(
ω − (εk − εl)

)
δ
(
ω − (εm − εn)

)}
(10)

4I believe it should be possible to generalize the argument to nonzero T, but have not to date done so.
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Now at last we are in a position to relate Q(ε) to the density-density response function
χ(rr′ : ω) ≡ δρ(r : ω)/δU(r′ : ω). We recall that in the absence of interactions

Imχ(r, r′ : ω) =
∑
ij

fi(1− fj) ϕ∗i (r) ϕj(r) ϕ∗j (r′) ϕi(r′) δ
(
ω − (εj − εi)

)
(11)

and so, expanding the squared matrix elements in (10) explicitly,

Q(ε) = α · (2π/~)

∫ ε

0
dω

∫∫
dr1dr

′
2dr2dr2 Im χ(r1, r

′
1 : ω) Im χ(r2, r

′
2 : ω)

× Veff(r1 − r2)Veff(r′1 − r′2) (12)

This expression is still a bit messy. To simplify it, we use the fact that when averaged over
the COM variable χ(r1, r′1) is a function only of the difference variable (r1 − r′1). Then
taking Fourier transforms we find

Q(ε) = α · (2π/~)

∫ ε

0
dω

∫
ddq|Veff(q)|2 {Im χ(qω)}2 (13)

Since Veff(q) can be taken to be some constant V0, we finally obtain (at T = 0) for
Γ(ε) ≡ (dn/dε)−1 ∂Q(ε)/∂ε the simple expression

Γ(ε) = α · (2π/~)V 2
0 (dn/dε)−1

∫
ddq|Im χ(q, ε)|2 (14)

Although it was hard work to get to eqn. (14), the payoff is worth it since (a) it is valid
independently of the degree of disorder and the dimensionality d of the system (though
the numerical constant α will depend on these), and (b) it is often possible to use simple
phenomenological arguments to determine the form of Imχ(q, ε) in the “interesting” regime.
Let’s start with the pure case, which should be well described by Fermi-liquid theory, or
at least qualitatively by the Sommerfeld free-electron-gas model. For this model we have
for ε� εF and q � qF the simple result (in 3D)

Imχ(q, ε) = (dn/dε)(ε/qvF ) θ(qvF − ε) (15)

The principal contribution to the integral over q in (14) then comes from large q (qvF � ε)
(of course, for q ∼ qF expression (15) fails and we have to use a more accurate expression,
but by that time the approximation Veff(q) = V0 has already failed). The important point is
that once the explicit factor of ε2 is taken out the result of the integration is only negligibly
dependent on ε. Thus we obtain the familiar result

Γ
(3D)
FL (ε) = const. ε2 (16)

(which could of course have been derived more quickly by the standard arguments based
on the Pauli principle).



PHYS598PTD A.J.Leggett 2016 Lecture 7 Effects of interactions in a disordered system 5

For a pure 2D system the situation is less obvious. Because of the square-root divergence
of the noninteracting response function χo(qω) for ω → qvF [Problem], evaluation of (15)
using this leads to the result

Γ2D
FL(ε) = const. ε2 ln(εF /ε) (16a)

However, it is not immediately clear whether replacing χ(qω) with the RPA removes the
singularity. According to what as far as I know are the most recent results5, it does not,
i.e. (16a) is the correct result. In any case the point is somewhat moot since, as we shall
see, any nonzero disorder always renders (16a) incorrect in the limit ε→ 0.

We now turn to the case of prime interest in the present context, namely the effects of
electron-electron interactions in a disordered system. We should assume that the energy ε
of interest is� 1/τ where τ is the elastic scattering time (remember that even under these
conditions the standard Pauli-principle argument still gives Γ(ε) ∼ ε2). Suppose also that
we concentrate for the moment on the regime of small q, ql� 1 where l = vF τ is the mfp
against elastic scattering. Then the propogation of the density is given by the standard
diffusion equation

∂ρ(rt)

∂t
= D∇2ρ(rt) (17)

where D(= σ/χ0) is the diffusion coefficient, and correspondingly the density-density cor-
relation function has the standard (“dirty-hydrodynamic-limit”) form

χ(qω) = χ0
Dq2

−iω +Dq2
(18)

Thus from (14) we find that the small-q contribution to Γ(ε) (call it ΓSR(ε)
)

is

ΓSR(ε) = const. ε2
∫ qm

0

qd−1(Dq2)2

(ε2 +D2q4)2
dq (19)

where qm is a phenomenological cutoff, of order l−1. Without evaluating the integral
explicitly6, it is clear that (for d < 4) it diverges at the lower limit for ε→ 0 and is of order
ε−2+d/2, and hence we find

ΓSR(ε) = const. εd/2 (20)

Since in d ≤ 3 dimensions this power law is lower than the ε2 that would come from large
q, it is clear that in the limit ε→ 0 eqn. (20) is the exact asymptotic form of Γ(ε).

Now let us calculate the renormalization of the single-electron density of states (DOS)
in this approximation (lowest-order perturbation theory in the interaction). To do this, it

5Metzner et al., Adv.Phys., 47,3 17 (1998).
6For d = 2 the integral is trivial and equal to (π/8Dε).
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is necessary to calculate the shift in energy due to the virtual processes that correspond to
the real processes that are treated in eqn. (1): formally,

Γn =
∑
i

|〈i|V |n〉|2δ(εi − εn) (21a)

∆εn =
∑
i

|〈i|V |n〉|2

εn − εi
(21b)

and so

∆εn =

∫
Γn(ε′)

εn − ε′
dε′ (22)

where Γn(ε′) means the value of Γn which would be calculated by substituting εn = ε′ in eqn.
(21a). In the standard textbook field—theoretic technique, the equation corresponding to
(22) (which is actually valid beyond second-order perturbation theory) relates the real part
Σ(ε) of the single-electron self-energy to its imaginary part Γ(ε):

Σ(ε) =

∫ ∞
−∞

dε′

ε− ε′
Γ(ε′) (23)

The only slightly tricky point here is that the integral runs over negative7 as well as positive
ε′, so that one needs to know also Γ(ε) for the hole states (ε < 0); however, we can see
immediately from the symmetry around the Fermi surface that this must be a reflection of
the positive-energy behavior, i.e. Γ(ε) ∼ const |ε|d/2 for ε < 0.

If we substitute the 3D Fermi liquid form of Γ(ε), eqn. (16), in (23), we find that the
lowest-order8 correction Σ(ε) to the original energy ε is of order ε2, and the correction is
thus negligible in the limit ε → 0. For the 2D Fermi liquid the situation is not entirely
clear, but it seems unlikely that the behavior is worse than ε2 ln ε, which still vanishes by
comparison with ε in the limit ε→ 0. Turning now to the disordered case, we see that for
d = 3 eqn. (23) leads to Σ(ε) ∼ ε3/2, still negligible compared to ε. However, for d = 2
things change qualitatively: the lowest-order term in ε in Σ(ε) is

Σ(ε) ∼ −const. ε ln(εc/ε) (24)

where εc is an upper cutoff energy in the integral (23), which we can take to be of the
order of the inverse of the elastic scattering time τ (since for ε & 1/τ the hydrodynamic
(diffusion) approximation (18) for χ(qω) fails). The novel feature is that now the (negative)
correction to the original energy ε of the state n now exceeds ε itself in the limit ε→ 0. This
indicates a fundamental breakdown of Fermi-liquid theory, for a dirty 2D metal. In fact, it

7This is not entirely obvious intuitively and needs detailed justification: see e.g. AGD.
8There is in fact a nonanalytic connection of order ε3 ln ε, but this would need a more accurate treatment

of Γ(ε) to discuss it.
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is clear that we cannot take the above results (based on lowest-order perturbation theory)
seriously when ε → 0. To determine the order of magnitude of ε at which perturbation
theory fails, we need to compare ε with Σ(ε) as calculated in (24). Now the constant in
eqn. (20) (which within a factor of order 1 is the same as that in (24)) may be seen from
eqn. (14) and the fact that χ0 ∼ (dn/dε) (the exact equality holding for the Sommerfeld-
gas model) to be of order V 2

0 (dn/dε)/~D, which generally speaking should be of order9

(kF l)
−1. Hence, the value εcrit of ε for which perturbation theory in the interaction should

fail should be given (to a crude order of magnitude) by

ln εcritτ/~ ∼ −kF l, (25)

i.e.,

εcrit ∼
~
τ

exp−kF l. (26)

For any reasonably clean metal the value of εc is so small as to correspond to unattainably
low temperatures, which explains why these effects are not routinely seen. However, in
dirty metals, where kF l is not much larger than 1 they should be observable (cf. below)
and in fact it may not be so difficult to reach the point where perturbation theory breaks
down.

The most obvious effect of eqn. (24) should be the renormalization of the single-electron
DOS. Assuming that we are in the “perturbation” limit Σ(ε)� ε, we have

(
dn/dε→ ν(ε)

)
ν(ε)

ν0(ε)
=

1

1 + ∂Σ/∂ε
∼= 1− ∂Σ/dε (27)

i.e. for the correction δν(ε) to the free-gas value ν0(ε)

δν(ε) ∼ const. ln(εc/ε). (> 0) (28)

At finite temperatures the generalization is probably best done by the standard tech-
niques of graphical perturbation theory, but the result is what one might perhaps guess:
for T � ε the ε in (28) is simply replaced by T , i.e.

δν(ε) ∼ const. ln(εc/T ). (29)

while for T � ε the zero-temperature result (28) is preserved.
In principle the logarithmic behavior of the DOS should lead to a similar behavior of

the specific heat of a 2D sample at sufficiently low temperatures, i.e.

δCv(T ) ∼ T ln(εc/T ). (30)

9We use V0 ∼ (dn/dε)−1 ∼ ~2/m in 2D, and D ∼ vF l.
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but this turns out to be very difficult to measure. There are, however, tunnelling measure-
ments10 that seem to confirm more directly the energy—and temperature-dependence of
the DOS.

However, as noted in lecture 2 (added material), the easiest properties of 2D and quasi-
2D systems to measure are the transport coefficients, and in particular the dc conductivity
σ. One might expect that in view of the lnT dependence of the DOS, this would have a
similar behavior, but the sign of the effect is not a priori obvious — the effective number of
carriers is in some sense increased, but so is the probability of e− e collisions, which unlike
(N-processes) in the pure case do not conserve momentum. In fact it seems impossible to
proceed without a proper graphical field theory calculation. It is relatively straightforward
to carry out such a calculation to second order in the interaction; note that the graphs
which are summed in this calculation do not correspond to those necessary to obtain the
WL connection in the noninteracting system, so that this approximation treats the two
effects as mutually independent. The result is

1D : δσe−e(T ) = − 1

A

e2

2π~
(4− 3

2
F̃σ)(D/2T )1/2 ∼ T−1/2 (31)

2D : δσe−e(T ) = − e2

4π2~
(2− 3

2
F̃σ) ln(1/Tτ) (32)

where the dimensionless quantity F̃σ is a rather complicated average of the screened
Coulomb matrix elements over the Fermi surface (see Lee and Ramakrishnan, op. cit.,
p. 308), which while always positive is not a priori large or small compared to 1.

We recall, now, that for the noninteracting system in the absence of magnetic fields
and spin-orbit scattering, the WL connection to the conductivity is (lecture 5)

1D : δσWL(T ) = − e
2

π~
Lϕ(T ) ∼ T−p/2 (33)

2D : δσWL(T ) = − e2

π2~
lnLϕ(T )/l = (const.+)− e2p

2π2~
ln(1/Tτ) (34)

where  Lϕ(T ) ≡
√
Dτϕ(T ) is the “phase-breaking length” and the corresponding “phase-

breaking rate” τ−1
ϕ is assumed to depend on T as T p.

How can one tell, experimentally, if the temperature-dependence one is seeing is due to
disorder or to e− e interactions or both?

For a 1D system, the predicted temperature-dependence is usually different (since usu-
ally p > 1), and in fact we see that in the limit T → 0 the “weak-localization” effect will
generally dominate the “interaction” one. In 2D we cannot use a similar argument, since
both effects are proportional to − lnT . However, in this case the magnetic field-dependence
is a useful diagnostic. The WL effect is sensitive only to the component of the field ⊥ to the

10Imry and Ovadyahu, PRL 49, 841 (1982)
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plane, and the temperature-dependence of δσ(T ) is predicted to saturate when the phase-
breaking length Lϕ(T ) becomes comparable to the magnetic length LM

(
≡ (~/eB⊥)1/2

)
.

As regards the interaction effect, it turns out that it is insensitive to the orbital coupling;
it does have a field-dependence (corresponding to positive magnetoresistance) due to the
Zeeman (spin) coupling, but this is independent of the field direction11 and has a charac-
teristic scale given by gµBB ∼ kBT . At low temperatures the corresponding “crossover”
field Bz is usually much greater than that (Borb) for the orbital effect on WL, so that
by choosing a field B such that Borb � B � Bz one can isolate the part of the lnT
temperature-dependence which is due to the interaction effect.

Putting these results together with the standard WL results derived in lectures 4-6, we
reach the following general conclusions12:

(1) If τϕ(T ) is measured, e.g. by measuring the crossover field in the magnetoresistance
as a f(T ), it should tend to ∞ as T → 0 ( as some negative power of T ) except for
the effect of static magnetic impurities [in particular, e−−e− interactions should give
τ−1
ϕ ∼ T in 2D and T 2/3 in 1D: see LR section III.2]

(2) If we simply add the contributions to the correction ∆σ(T ) to the Boltzmann con-
ductivity in 2D from WL and from interactions (as seems reasonable when both are
small) we find that apart from an uninteresting (and unmeasurable!) constant the
total correction is given by the expression

∆σ(T ) = −(e2/π~)(αp+ 1− 3

4
F̃σ) ln(1/Tτϕ) (35)

where p is the power of T with which τ−1
ϕ tends to zero as T → 0, and α is a

constant of order 1. Although values of the “screening function” F̃σ up to 3 · 5 have
been measured in Si MOSFETs, to make the factor in (35) negative would require
αp < 1 · 6, which seems unlikely though not impossible. Unless this happens, or the
situation changes qualitatively when ∆σ(T ) becomes comparable to σ0, one would
expect that a normal-metallic state13 cannot exist in 2D as T → 0. This was indeed
the accepted wisdom until around 1995.

11Unless the spin-orbit interaction is so strong as to constrain the direction of the spins.
12It is essential, here, to remember that the “anomalous” effects of SO scattering discussed in Lecture 8

require that the scattering be effectively 3D . In Si MOSFET’s or GaAs heterostructures, it is effectively
2D and the SO scattering simply adds to the dephasing terms.

13A superconducting state may exist, subject to the usual KT considerations, since the effect of “local-
ization” on Cooper pairs is qualitatively different from that on single electrons.


