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Long-range order in (quasi-) 2D systems

Suppose we have a many-body system that is described by some order parameter Ψ. The
OP could be a real scalar quantity (e.g., in the Ising model, the z-component of average
magnetization, which we called M in lecture 8) a complex scalar (as in the case of a
superconductor or liquid 4He), a vector (as in the 3D Heisenberg model, where it is the
spin magnetization density S) or something more complicated (as e.g. in the case of some
liquid crystals or superfluid 3He). Rather generically, the Hamiltonian (or free energy) of
the isolated system (no external fields) may possess some invariance with respect to one or
more symmetry operations on Ψ. E.g. the Hamilton of an isolated Ising system has the
form

H = −J
∑

ij=n.n.

σiσj (1)

and is clearly invariant under the symmetry operation of simultaneous inversion of all
spins (σi → −σi), which is equivalent to M → −M . Formally, this is reflected in the
fact that the free energy (or equivalently the partition function) is a function only of M2.
Similarly, the free energy of the GL model of BCS superconductivity contains only terms
of the form f(|Ψ|2) and |∇Ψ|2, and thus is invariant1 under (global) phase rotations (gauge
transformations) Ψ→ Ψ exp iα, where α 6= f(r). The Heisenberg Hamiltonian

H = −
∑
ij

JijSi · Sj (2)

is invariant under the operations of the group O(3) (simultaneous rotation of all the spins
around the same axis by the same angle). And so on.

In practice, the symmetry is likely to be broken by various external fields, which may
or may not be “weak.” For example, the symmetry of the Ising Hamiltonian is broken by
an external magnetic field in the z-direction, and that of the Heisenberg Hamiltonian, by
one in an arbitrary direction; in the latter case the added term is explicitly of the form

−H ·
∑
i

Si (3)

which shows that the Hamiltonian is still invariant under a subgroup of O(3), namely those
corresponding to rotations around the field axis. In the case of BCS superconductivity it
is strictly speaking impossible to break the gauge symmetry of the closed system by any
physical mechanism, since it is equivalent to a different choice of overall phase for the single-
particle wave functions, which has no physical significance. The best one can do is to insert
terms in the Hamiltonian which couple the BCS phase of the system in question (defined,

1As is of course the original Hamiltonian, since an overall change of phase simply corresponds to multi-
plying the single-electron wave function by eiα/2, which has no physical significance.
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say, as “the electrons within layer n” of a layered material) to that of its neighbors; the
Josephson-type coupling discussed in lecture 8, namely

ε = −J
∑
m

(Ψ∗nΨn+1 + c.c.) (4)

is just such a term. (The free energy is, of course, still invariant under simultaneous phase
rotation of all the Ψn through the same angle).2

In the following it may be easiest to visualize what is going on in terms of a model of
spins subject to an exchange interaction and, possibly, an external magnetic field; to mimic
a complex scalar order parameter we can specialize to the so-called XY model, where the
spins lie entirely within a plane (say the xy-plane) and are coupled by an interaction that
is isotropic within this plane, e.g.

H = −J
∑
ij
ln

(SxiSxj + SyiSyj)− SxH (J > 0, ferromagnetic) (5)

The complex order parameter Ψ is then Sx + iSy. The Ising model involves only one axis
and the Heisenberg model term three equivalent axes, so the XY model is in some range
intermediate between them. From the point of view of symmetry it is completely equivalent
to the case of a superfluid/superconductor.

We now want to pose a question concerning the condition for ferromagnetism, or more
generally for so-called “long-range order.” There are at least two obvious ways of doing
this:

(1) Does the system possess a finite expectation value of Ψ (i.e. of S) in the thermo-
dynamic limit when H → 0?

(2) Are the correlations of Ψ(r) and Ψ(r′) of infinite range with respect to |r− r′|?
There is actually a close connection between these two criteria, as can be seen as follows:

For any quantity A that can be treated as classical (as can the total spin of the system
in the thermodynamic limit) the fluctuations 〈A2〉 are related to the susceptibility χAA by
the standard relation (a special case of the fluctuation dissipation theorem)

〈A2〉 = kTχAA (6)

Consider the quantity Ψ ≡
∫

Ψ(r)dr (≡ (something related to) total spin S for a magnetic
model). If the correlation 〈Ψ(r)Ψ∗(r′)〉 is of finite range (i.e. if the quantity in 〈 〉 tends
to zero “sufficiently fast” (see below) as |r − r′| → ∞) then 〈Ψ2〉 is of order N in the
thermodynamic limit and thus so is χAA; this then means that we should expect the total
spin S to be proportional to NH and to vanish in the limit H → 0. If, on the other hand,

2The question of whether the “absolute” phase of the order parameter of a superconductor or superfluid
can be given a meaning, e.g. by comparison with a “phase standard,” is a still highly debated one; see
e.g. AJL in Bose Einstein Condensation, ed. D. W. Snoke et al., Dunningham and Burnett, PRL, 82 3729
(1999).
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the correlation is of infinite range, i.e. 〈Ψ(r)Ψ∗(r′)〉 tends to a finite (nonzero) value as
|r− r′| → ∞, then by the same argument χAA is of order N2 and we expect, formally, the
value of S induced by a field H to be proportional to N2H and thus still of order N if
N → ∞ and H → 0 in such a way that NH ≥ const. An interesting intermediate case is
that the correlation falls off according to a power law, see below.

Although this argument is not at all rigorous, it focuses attention on the necessity of
taking the thermodynamic limit N →∞ and the limit H → 0 in the correct way. Consider
as an example Ising’s original argument concerning the 3D version of his model, in which
spins within a plane are infinitely tightly coupled and spins on neighboring planes have
coupling J . For this model he correctly obtained the result, valid for any value of the field
H.

S =
N sinhNsµH/kT√

sinh2NsµH/kT + e−2NsJ/T
(7)

where Ns is the number of spins in a plane and for a large rectangular volume of constant
shape is∝ N2/3. If we take the limits (as Ising did) in the orderH → 0 thenN →∞, clearly
it is zero. On the other hand, if we take it in the opposite order, it is clear that S = N !
(This particular example is a bit pathological because of the unphysically strong form of the
in-plane coupling). In a system with “reasonable” (generally, short-range) interactions we
need to take the limit in such a way that the limit of the product (NH) is large compared
to kT/µ; if we do not, then the fluctuations corresponding to a uniform rotation of all
spins simultaneously will mean that the total magnetization is much less than N . In other
words, we need a field that, though weak, is still sufficiently strong to stabilize the system
against (uninteresting) rotations as a whole. This consideration is common to cases with
discrete symmetry (like the Ising model), where the relevant “rotations” are only through
π, and those with continuous symmetry (like the isotropic Heisenberg model) where they
can be arbitrarily small. However, the next part of the argument requires us to distinguish
these two cases. For a model with discrete symmetry and short-range forces the minimum
energy to form a “domain wall” is proportional to Nd−1 (e.g. for the Ising model in 1D
it is 2J), and it turns out that while in 1D long-range order is destroyed at any nonzero
temperature3, it is stable in 2D up to a critical temperature, which is independent of N
in the thermodynamic limit (in particular, this follows for the Ising model from Onsager’s
explicit solution). For the case of a continuous symmetry, which is more interesting in the
present context, the situation is a bit different; as shown in lecture 1, in 3D the condition
(NµH/kBT � 1) is compatible with a value of the single-spin orientation energy µH which
is still small compared to the lowest spin-wave energy (∼ k2min ∼ N−2/d); however, in 1D
this is no longer true in the thermodynamic limit, and in 2D the situation is “marginal,”

3This may be seen from the fact that the “kinks” are independent, and while the probability to form a
kink between two neighboring sites is exp−J/kBT � 1, the number of independent pairs of sites ∝ N .
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since the quantities kT/N and k2min scale in the same way with N . Thus the question of
the existence or not of LRO in 1D and, even more, in 2D is nontrivial.

So let’s consider the 2D case rather more quantitatively. We will take as a convenient
example a GL model such as the XY model for which the OP is a complex scalar, so that
the symmetry in question is a phase rotation. We will examine explicitly criterion (6):
does the correlation 〈Ψ(r)Ψ∗(r′)〉 have finite or infinite range? The exact expression for
this correlation is given within GL theory by the formula (

∫
DΨ ≡ functional integral)

〈Ψ(r)Ψ∗(r′)〉T =

∫
DΨ(r′′)(exp−F{Ψ(r′′)}/kT )Ψ(r)Ψ(r′)∫

DΨ(r′′) exp−F{Ψ(r′′)}/kT
(8)

In general it is not possible to evaluate this expression in closed form because of the
occurrence of terms higher than quadratic in Ψ(r) in the free energy. However, we can
proceed as follows: Consider first the “mean-field” solution, that is the form of the function
in Ψ(r) which corresponds to the absolute minimum of the free energy F{Ψ(r)}. As we
saw in lecture 8, for T < Tc (the MF transition temperature, defined by α(T ) = 0)

Ψ(r) = const. =
(
− α(T )/β

)1/2 ≡ Ψ0 (9)

Now expand the free energy around this value, and keep terms only up to second order in
δΨ(r) ≡ Ψ(r) − Ψ0. It is convenient to split δΨ(r) into an “amplitude” term δΨ‖ which
changes |Ψ|2 and a “phase” term δΨ⊥ which preserves |Ψ|2; from symmetry, the free energy
cannot contain cross-terms between these. The fluctuational free energy associated with
amplitude fluctuations has a finite contribution from the terms α(T ) |Ψ|2 + 1

2β(T ) |Ψ|4, as
well as from the gradient term:

F fl‖ (T ) =

∫ {
2 |α(T )| |δΨ‖(r)|2 + γ(T ) |∇(δΨ‖)|2

}
dr (10)

Because even the long-wavelength fluctuations have a “gap” α(T ), it follows that except
right at the mean-field Tc where α(T )→ 0 the amplitude fluctuations cannot drive the LRO
to zero (Problem). By contrast, let us write the phase fluctuations in the form

Ψ(r)→ Ψ0 exp iϕ(r) [so, formally, δΨ⊥(r) = Ψ0(iϕ(r)− 1

2
ϕ2(r) + ...).] (11)

It is clear that this kind of fluctuation, which preserves |Ψ|2, has no restoring force from
the “bulk” terms in F, and the only contribution is from the gradient term

F fl⊥ (T ) = γ(T ) |Ψ0|2
∫
dr (∇ϕ)2(r) (12)

If we expand ϕ(r) in a (d-dimensional) Fourier series

ϕ(r) = (2π)−d/2Ω−1/2
∑
k

ϕk exp ik · r (13)
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then F fl⊥ (T ) is a sum of contributions from the different k’s:

F fl⊥ (T ) = (2π)−dγ(T )|Ψ0|2
∑
k

k2ϕ∗k ϕ−k (14)

So far, the dimensionality d of the system has not entered explicitly.
Now, let us use the above results to evaluate the correlation 〈Ψ(r)Ψ∗(r′)〉. In the

approximation of neglecting amplitude fluctuations, this is simply |Ψ0|2 〈exp i
(
ϕ(r) −

ϕ(r′)
)
〉. Moreover, in view of the uncorrelated Gaussian nature of the fluctuations ϕk (see

below), we can write

〈exp i
(
ϕ(r)− ϕ(r′)

)
〉 = exp−1

2
〈[ϕ(r)− ϕ(r′)]2〉 ≡ exp−Q(|r− r′|) (15)

We therefore have to calculate the quantity

Q(|r− r′|) ≡ 1

2
〈[ϕ(r)− ϕ(r′)]2〉 =

∑
k

〈ϕkϕ−k〉(1− exp ik · r− r′)× 1/(2π)dΩ (16)

Now, within our approximation for the fluctuational free energy (above) the latter is just
a sum of contributions from the different k, and the probability of a given set of values
ϕkϕ−k is just the product over the probabilities for each k separately. Thus we find4

〈ϕk ϕ−k〉 =

∫
d(ϕk ϕ−k){exp−

(
βγ(T )k2 |Ψ0|2 ϕk ϕ−k

)
}∫

d(ϕk ϕ−k) exp−
(
βγ(T )|Ψ0|2 k2ϕkϕ−k

) =
1

2
Ak−2 (17)

where the constant A(T ) is given by

A(T ) ≡ kBT (2π)d

γ(T ) |Ψ0|2
(18)

This formula is still valid independently of dimensionality.
Where the dimensionality comes in is at the final stage of inverting the Fourier transform

to obtain Q(|r− r′|) ≡ Q(r):

Q(r) =
1

2

A(T )

(2π)dΩ

∑
k

(1− cosk · r)

k2
=
A(T )

2
· 1

(2π)d

∫
ddk

1− cosk · r)

k2
(19)

=
1

2
· 2A(T )

(2π)d

∫ kc

0
ddk

sin2 1
2k · r
k2

=
2kBT

(2π)d γ |Ψ0|2

∫ kc

0
ddk

sin2 1
2k · r
k2

4There is a slightly delicate point involved in the “counting” of the fluctuations: since ϕk ≡ ϕ∗
−k, we

need to take ϕk and ϕ−k together, and this gives rise to the factor of 1/2.
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where, if necessary, the integral must be cut off at an upper limit kc of the order of the
value of the k for which the GL expression breaks down; this is typically of order ξ−1(T )

where ξ(T ) ≡
(
γ(T )/α(T )

)−1/2
is the GL correlation length introduced in lecture 8. In

the following, we assume we are interested in values of r � ξ(T ). It is clear that in the
3D case the integral over d3k gives an expression which is independent of r for r � ξ(T ),
and proportional to ξ−1(T ). So in this case the effect of fluctuations is to depress the
magnitude of the quantity 〈Ψ(r)Ψ∗(r′)〉 for such large values of |r − r′|, but it still tends
to a nonzero asymptotic value.

In 1 and 2D the situation is qualitatively different because of the infrared-divergent
behavior of the integral

∫
ddk/k2. In fact, in the 1D case, we have

Q(r) = Ãr, Ã ≡
(
2A(T )/π

)
·
∫ ∞
0

sin2 x

x2
dx (20)

Hence, in this case, the quantity 〈Ψ(r)Ψ∗(r′)〉 falls off exponentially with r. It is convenient
to write the result in the form

〈Ψ(x)Ψ∗(x′)〉 = |Ψ0|2 exp−|x− x′|/ξ′(T ) (21)

ξ′(T ) ≡ Rξ(T )

where ξ(T ) ≡ (γ/α(T ))1/2 (see lecture 8) and R(T ) ∼ (α2/β)ξ/kBT is of the order of
the free energy per unit correlation length in units of kBT . For T not too close to Tc, if
the 3D transition is well described by MF theory, R is typically � 1; in particular this is
true for the superconducting case. We see therefore that there is no LRO at any finite T
in a 1D system described by a GL free energy with a continuous symmetry; moreover, it
is clear that the susceptibility (obtained as above by integrating over the volume) should
be proportional to N not N2, i.e. the system behaves “normally” on the application of
a weak external “magnetic field.”5 Nevertheless, when examined on length scales short
compared to ξ′(T ) (which can still be very long compared to microscopic lengths such as
the interparticle distance) the system may look very much “as if” it possessed LRO.

In the 2D case, the expression for Q(r) is messy because of the effect of the angular
averaging, but it is clear that for r � k−1c ∼ ξ(T ) this gives simply a factor of π/2 and thus
Q(r) = kBT/4πγ|Ψ0|2ln(r/ξ)+ const. Hence, the quantity 〈Ψ(r)Ψ∗(r′)〉 falls off according
to a power law:

〈Ψ(r)Ψ∗(r′)〉 ∼
(
ξ(T )/|r− r′|

)η(T )
(22)

where η(T ) = kBT/
(
4πγ(T ) |Ψ0|2

)
. For the special case of a neutral bosonic superfluid

such as 4He for which γ(T ) can be shown (see lecture 10) to be equal to ~2/2m2 times the
superfluid density ρs(T ), this can be written

η(T ) ∼ kBT/
(
2πρs(T )~2/m2

)
(23)

5A much more detailed study of the 1D GL system, largely by computational methods, has been carried
out by Scalapino et al., Phys. Rev. 86, 3409 (1972).
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where ρs(T ) is the 2D superfluid density (superfluid mass/unit area). Note that in this
case the susceptibility is “normal” if η(T ) > 2, otherwise it increases faster than N in the
thermodynamic limit. Hence we might expect a qualitative change in the behavior of the
system at the point η(T ) = 2, i.e. when the superfluid density satisfies

ρs(T ) =
1

4π
[
m

~
]2kBT (24)

This (or an equivalent extension for other types of order) indeed turns out to be the case,
although the analysis requires us to go beyond the consideration of small fluctuations
around homogenous equilibrium (see next lecture).

The above arguments are physically appealing but not rigorous, since they depend on
(a) an appeal to an effective GL form of free energy and (b) approximation of the free
energy of fluctuations around the MF solution by a quadratic expression. A rigorous proof
of the absence of LRO at any nonzero temperature in 1 or 2D was found by Hohenberg6 for
the specific case of a superfluid or superconductor, and applied by Mermin and Wagner7 to
other types of ordering (magnetic and crystalline); it is usually known as the Hohenberg-
Mermin-Wagner theorem. I will give the proof explicitly for the case of a neutral Bose
superfluid under the normal assumption that we can pretend that the quantity 〈a0〉 ≡∫
〈ψ(r)〉dr exists.

Suppose Ĥ is the Hamiltonian of the system, all expectation values 〈 〉 are taken in
thermal equilibrium and A and C are any two arbitrary operators. Then there exists a
famous inequality8 due to Bogoliubov:

1

2
〈{A,A†}〉 · 〈

[
[C,H], C†

]
〉 ≥ kBT 〈[C,A]〉2 (25)

([ , ] ≡ commutator, { , } ≡ anticommutator)
In the case of a Bose superfluid, take A to be the k − th Fourier component of the

particle destruction operator ψ̂(r), i.e. A ≡ ak, and C to be the −k’th component of the
density fluctuation operator, ρ−k. Then since [ρ−k, ak] = a0, the Bogoliubov inequality
takes the form

1

2

(
2〈nk〉+ 1

)
· 〈
[
[ρk, H], ρ−k

]
〉 ≥ kBT 〈a0〉2 = kBTn0 (26)

where at the last step I have made the usual assumption that 〈a0〉2 can be equated with
the condensate occupation number n0. Now for a Hamiltonian without velocity-dependent

6P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
7N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
8For the proof, which is straightforward and based on a Schwartz inequality, see Mermin and Wagner,

loc. cit.
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forces, the double commentator of ρk with Ĥ is simply given by the well known f-sum rule
result, namely n~2k2/m. Thus we obtain Hohenberg’s lemma:

nk ≥
mkBT

~2k2
· n0
n
− 1

2
(27)

which is true independently of dimension d.
A crude physical interpretation of Hohenberg’s lemma runs as follows: Suppose there

are n0 particles per unit volume in the condensate. The operator ρk effects (among other
things) the removal of a particle from the state 0 (the condensate) and its placing in the
state k 6= 0. Because ρk commutes with the potential energy, the only energy cost of this
operation is the change in KE, namely ~2k2/2m. At least if this energy is� kBT , we should
therefore expect the population of the state k to be at least of the order kBT/(~2k2/2m)
times the original fractional probability n0/n of the groundstate being populated. This
gives the lemma (to within a constant ∼ 1, of course).

It is clear that in 1 or 2D, if n0/n 6= 0, the density of “uncondensed” particles

nn ≡
∑
k 6=0

nk →
1

2π

d ∫
d2knk >

1

(2π)d
· 1

2

∫ k0

0

(
k20
k2
− 1

)
d2k (28)

(
k20 ≡

(
2mkBT

~2
n0
n

))
must diverge, so that we cannot fulfill the obvious constraint nn + n0 = n. Thus the
assumption of nonzero n0/n is inconsistent, i.e. we recover the result that there can be no
LRO in 1 or 2D (at any nonzero T ). In 3D the assumption is not internally inconsistent,
but application of the lemma then yields an upper limit on the condensate fraction n0(T )/n
at any finite T (a not universally known, and quite useful result, see Problem).

A number of comments regarding the HMW theorem are in order. First, one may
wonder how would it be modified by the application of a small “symmetry-breaking” field,
which in the Bose case would give rise to an extra term in the Hamiltonian of the form

∆H = −(λ0â0 +H.c.) λ0 → 0. (29)

Of course, in the real (particle-conserving) situation such a term is unphysical, but its
analogs in cases of other types of broken symmetry are perfectly realistic (e.g. in the XY
model, λ0 would correspond to a weak magnetic field along some axis in the xy-plane). It
is clear that the only change in the derivation is that the double commutator 〈[ρk, H] , ρk〉
now acquires an extra term of the form λ0(〈a+0 〉 + 〈a0〉) (= 2λ0〈a0〉 if we assume λ0 and
hence 〈a0〉 is real). Thus, Hohenberg’s lemma is generalized to

nk ≥
mkBT

~2k2 + 2mλ0〈a0〉

(n0
n

)
− 1

2
(30)
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We now no longer get a divergence in the sum over k, but since we must maintain the
constraint

∑
k nk + n0 = n, the lemma puts an upper limit on n0 as a function of λ0

(Problem).
A second obvious question is: How seriously should we take the theorem for real-life

physical systems, which needless to say have finite dimension L? After all, the infrared
logarithmic divergence of the quantity nn in eqn. (28) only arose because we implicitly
took the limit L → ∞ and therefore replaced the sum in its definition by an integral. So
let’s go back to eqn. (27) and perform the sum over k ≡ (2πnx/L, 2πny/L) where nx
and ny are both integers such that nxny 6= 0 (i.e. both cannot simultaneously be zero,
as this would correspond to the condensate). Without evaluating the sum in detail, it is
intuitively clear that its order of magnitude is given by an integral cut off at k ∼ 2π/L.
Hence we find that the lower limit on nn (eqn. (28)) is given in order of magnitude by

nminn ∼ 1

8π
k20 ln k0L

(
k0 ≡

(
2πmkBT

~2
n0
n

)1/2
)

(31)

Defining a characteristic “degeneracy” temperature T0 by the condition that the thermal
de Broglie wavelength λL(T ) be of order of the interparticle separation, or more formally
by T0 ≡ n~2/2πmkB, we can rewrite (31) as

nminn ∼ 1

8π2

(
T

T0

)
n0 ln

{
(L/λL(T ) · (n0/n)1/2

}
(32)

and thus, since nn + n0 ≡ n, the limit on n0/n is given by the implicit equation

n0
n
≤
(

1 +
1

8π2
T

T0
ln
{

(L/λL(T )(n0/n)1/2
})−1

(33)

Let’s ask for the smallest value Lmin of k for which the HMW requires n0 to be less than,
say, 10% of n (the approximate value it has in real (3D) liquid 4He). The answer is
approximately

Lmin ∼
λT
3

expα
T0
T

α ∼ 9

8π
(34)

(where the value of α should be taken only as an order of magnitude). Thus, e.g. for a 1cm2

monolayer film of 4He(T0 ∼ 3K) the HMW becomes essentially irrelevant for T � 50 mK,
a temperature regime not difficult to reach experimentally. For other kinds of 2D phase
transition the situation is even worse (or better!)): e.g. in the case of crystalline order T0 is
replaced by a temperature that is at least of the order of the Debye temperature, so to see
HMW-type effects in (say) a graphene crystal at a few degrees would require the crystal to
extend from here to the moon! The moral is that before taking the theorem too seriously
in a real-life situation, one should carefully put in the numbers.
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Incidentally, we note that the theorem is not in contradiction with the estimates given
earlier for the fall-off of the correlation C(r, r′) ≡ 〈Ψ(r)Ψ(r′)〉, namely C(r, r′) ∼ |r −
r′|−η(T ) where η(T ) ≡ kBT/2πρs(T )(~2/m): the quantity n0/n is proportional to N−2

times the double integral of C(rr′) over r and r′, which is proportional to N for η(T ) > 2
and to N2−η/2 for η(T ) < 2, so for η(T ) 6= 0 the condensate fraction indeed vanishes in the
thermodynamic limit.

Finally, we must ask how the results we have obtained, either by the phenomenological
GL technique or by Hohenberg’s theorem, apply to the realistic case of quasi-2D geometries,
that is to a set of planes with weak but nonzero interplane coupling. Obviously, in the
limit of a very anisotropic continuum the generalization in each case is straightforward: if
k‖ denotes the component(s) of k parallel to the rods/planes and k⊥ the “perpendicular”
component(s), then in the GL formulation we must make the replacement

γk2 → γ‖k
2
‖ + γ⊥k

2
⊥ (35)

while in the Hohenberg theorem, if we define “parallel” and “perpendicular masses”m‖,m⊥,
then we must make the replacement

k2/m→ k2‖/m‖ + k2⊥/m⊥ (36)

Since the original 3D expressions can be recovered (up to a multiplying constant) by a
rescaling of the different components of k, we see that the very anisotropic 3D case is
equivalent in the present context (only) to a fully 3D case, and in particular that LRO is
possible.

However, it is physically obvious that if we keep the in-plane (etc.) properties and also
T constant, and gradually turn down the interplane coupling, there must come a point at
some nonzero value of this coupling at which we recover the “truly” 2D behavior; so the
above argument, which if taken seriously would suggest that an infinitesimal transverse
coupling should stabilize LRO, cannot be the whole truth.

Formally, this comes about because when the magnitude k0 of the maximum transverse
wave vector that can be appreciably thermally excited, namely k0 ∼ (kBT/γ⊥ |Ψ0|2)1/2,
becomes comparable to the inverse interplane spacing, we can no longer use the continuum
model and must return to the discrete form of the coupling energy, namely

F⊥ = −J
∑
mn

∫
(Ψ∗i Ψj + c.c.)dr‖ (37)

(or an equivalent replacement in the Hamiltonian). It is clear that the maximum value of
this free energy per plane is 2J |Ψ0|2 per unit area.

Will this be enough to stabilize the LRO? To answer this question, we note that when
viewed from any one plane the interplane coupling essentially looks like an external mag-
netic field. Moreover, the differential susceptibility per unit area of the isolated plane is
given by the quantity (apart from a multiplying constant)
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χ0 ≡ N−1(kBT )−1
∫∫

dr dr′〈Ψ(r) Ψ(r′)〉 (38)

which as we have seen is proportional to a constant for η(T ) > 2 but to a positive power of
N for η(T ) < 2. Thus we conclude that for η(T ) < 2 an infinitesimal interplane coupling
will stabilize LRO, while for η(T ) > 2 a minimum value of J will be required. We postpone
for now the question of what this minimum value is.

[Relation of ODLRO and superfluidity]


