Physics 598 PTD Physics of two-dimensional systems Fall 2016

Time:	Monday/Wednesday 1:00 - 2:20pm
Place	276 Loomis Lab of Physics (LLP)
Instructor:	Tony Leggett
Office:	2113 Engineering Sciences Building (ESB)
Office Hour*:	4:00 Monday (except 5 Sept. and 21 Nov.)
TA:	Mao-chuang Yeh
TA Office:	3 rd Floor Common area, Engineering Sciences Building (ESB)
Office Hour:	4:00 Friday

TOPICS: The course will concentrate on those aspects of the physics of 2 D systems that have no obvious analogs in 3 D. (e.g. absence of long-range order, the (supposed) universality of localization, the quantum Hall effect, topological protection). It will emphasize the comparison of theory and experiment, particularly in areas where there is currently substantial discrepancy.

A tentative lecture schedule for the first half of the course is attached; a schedule for the second half will be distributed later.

BOOKS: I have not found a single book that adequately covers all the material of the course, though there are some that give excellent treatments of particular topics (see below). A useful if somewhat "random" reference for the general subject of (one- and) two-dimensional systems is section E of the journal *Physica*, which was introduced in 1997 specifically to cover this area.

Other suggestions:

D. J. Thouless, in P.C.W. Davies (ed.), *The New Physics*, Cambridge University Press, 1989, 530 N 422. A good introduction to 2D physics at the Scientific American level, with special emphasis on phase transitions.

J. Wosnitza, Fermi Surfaces of low-dimensional organic metals and superconductors, Springer Tracts in Modern Physics, v. 134 508ER38

Y. Imry, *Introduction to Mesoscopic Physics*, 2nd ed. (Oxford University Press, 2002). As the name implies, this book covers a wider area than 1- and 2-D systems, but it is quite useful for its treatment of weak localization (where, however, it ignores the developments of the last few years). 537.6 Im 8i2002.

S. Girvin and R.E. Prange (eds.) *The Quantum Hall Effect*, 2nd ed. (Springer, Berlin 1990). A very useful collection of reviews on various aspects of both the integral and the fractional effects.537.6Q R51990 (Res)

B.A. Bernevig, *Topological Insulators and Topological Superconductors*, Princeton University Press, 2013. (library call number 530.41 B457t)

ASSESSMENT: assuming departmental approval, by homework assignments.

*If you cannot come at my normal office hour, please e-mail me for an appointment

Physics 598 PTD Physics of two-dimensional systems Fall 2016

Tentative lecture syllabus for first half of course

Lecture	Date	Topic
1	Mo 22 Aug	General introduction:what is special about two dimensions?
2	We 24 Aug	Some important experimental systems
3	Mo 29 Aug	Single-particle quantum mechanics in two dimensions
4	We 31 Aug	Weak localization I: General considerations, one-parameter scaling
5	We 7 Sept	Weak localization II: Quantitative treatment
6	Mo 12 Sept	Weak localization III: The effects of spin
7	We 14 Sept	Weak localization IV: Interaction effects, the pre-1995 experimental situation
8	Mo 19 Sept	Ginzburg-Landau theory
9	We 21 Sept	Long-range order in 2D systems
10	Mo 26 Sept	The Kosterlitz-Thouless transition
11	We 28 Sept	Dynamics of superfluid films: The superconducting analogy
12	Mo 3 Oct	The experimental situation: 2D magnetism
13	We 5 Oct	The experimental situation: Superconducting films
14	Mo 10 Oct	The experimental situation: Si MOSFETs
15	We 12 Oct	Some aspects of two-dimensionality in the cuprates

Second half of the course

Date	Topic
Mo 17 Oct	Quantum Hall effect: general considerations
We 19 Oct	The integral QHE: topological considerations, edge states
Mo 24 Oct	The fractional QHE: Laughlin wave function, fractional charge and statistics
We 26 Oct	Composite fermions: experimental evidence for fractional charge and statistics
Mo 31 Oct	The quantum Hall effect: miscellaneous topics
We 2 Nov	Topological insulators: general preliminaries
Mo 7 Nov	Topological insulators: a simple example
We 9 Nov	Topological insulators: further topics, the experimental situation
Mo 14 Nov	Topological superconductors, Majorana fermions
We 16 Nov	Topological quantum computation: the general idea
Mo 28 Nov	The Kitaev models
We 30 Nov	The nu=5/2 quantum Hall state
Mo 5 Dec	(p+ip) Fermi superfluids; strontium ruthenate
We 7 Dec	Review and overview
	Mo 17 Oct We 19 Oct Mo 24 Oct We 26 Oct Mo 31 Oct We 2 Nov Mo 7 Nov We 9 Nov Mo 14 Nov We 16 Nov We 30 Nov We 30 Nov

Lectures 21-28 are self-contained and can be followed without having absorbed the material on the quantum Hall effect in lectures 16-20.