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Magnetic impurity and other ‘pair-breaking’ effects

References: de Gennes Chapter 8; AJL QL section 5.9

One of the most striking experimental facts about (classical) superconductivity is that
while it is rather insensitive to nonmagnetic impurities, even a rather small concentration
of magnetic impurities (ie, those corresponding to a finite local moment) can lead to a
drastic suppression of Tc or even the complete vanishing of superconductivity. The basic
reason for this and related affects is that such impurities destroy the invariance of the
(conduction-electron) Hamiltonian under time reversal. In the following, we suppose
until further notice that the effect of magnetic impurities is to add to the conduction-
electron Hamiltonian a term of the form

∆K =
∑
m

JmSm · σ(rm) (1)

where σ(r) ≡ σαβψ
†
α(r)ψβ(r) is the conduction-electron spin density at the point r. The

spins Sm are taken to be classical and random both in orientation and in position.
In lecture 9 we considered the case of nonmagnetic impurities, and showed that by

pairing time-reversed eigenstates (|n ↑〉, |n̄ ↓〉) of the single-particle Hamiltonian, we
would obtain almost as large an (average) value of the quantity F (r, r) as in the ‘pure’
case. To recapitulate the argument, we write in that case

ΨBCS =
∏
n

(un + vnan↑an̄↓)|vac〉 (2)

and the quantity F (r, r) takes the value

F (r, r) ≡ 〈ψ†↑(r)ψ
†
↓(r)〉 =

∑
n

unvnφn(r)φn̄(r) (3)

but since φn̄(r) ≡ φ∗n(r) this becomes simply

F (r, r) =
∑

n

unvn|φn(r)|2 (4)

and with an appropriate choice of the parameter unvn (= ∆n/2En) this can be made
approximately as large (or larger) as its value for the pure case. Thus, the pair term in
the potential energy, which for the simple contact potential considered is simply

〈V 〉pair = V0

∫
|F (r)|2dr (5)

is also just as large as in the pure case.
For a system lacking time reversal invariance we cannot repeat this argument, because

in general the eigenstates of the single-particle Hamiltonian no longer occur in pairs
related by time reversal. We therefore have two obvious choices: (a) pair in eigenstates
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of if Ĥ0 (which are not in general time-reversed) (b) pair in time reversed states (which
are not in general eigenstates of Ĥ0). Of course, intermediate choices are also possible.

Before embarking on a quantitative calculation, let’s try to consider the pros and
cons of choices (a) and (b) qualitatively. If we make choice (a), then from the kind of
general arguments developed in lecture 5 we would expect that the best choice is to
pair eigenstates of Ĥ0 with nearly degenerate energies εn. (These will not of course in
general be eigenstates of spin). Such a choice will lead to a depression of the quantity
F (r, r), which is effectively equivalent to a suppression of the constant V0; since Tc

depends exponentially on V0, we expect it to be strongly depressed (except in very
special circumstances, cf. below). So let’s consider alternative (b)(which is (something
like) what the system actually does, cf. below). We then lose little or nothing on the
pairing contribution to 〈V 〉, but the price is that we increase the kinetic energy; crudely
speaking, we have to start our pairing from a “pseudo-Fermi sea” that is the Fermi sea
that would describe the normal system subject to a Hamiltonian without the magnetic
terms. What does it cost us to create this “pseudo-Fermi sea” from the true normal-
groundstate (i.e., the groundstate of Ĥ0 including the magnetic impurities)? A back
of envelope argument goes as follows: consider a spin (or more generally time-reversal)
eigenstate made up out of eigenstates of Ĥ0 close to the Fermi energy. Such a state will
have a width Γ (≡ ~/τK , see below) which tends to a constant near εF , i.e., it is made
up of a packet of eigenstates of Ĥ0 which have spread ∼ Γ/2. Thus, to reconstitute a
“pseudo-Fermi sea” out of such spin eigenstates we need to supply an extra energy ∼ Γ/2
to the number of states involved in the rearrangement, which is ∼ (dn/dε)Γ/2. The total
energy required is thus ∼ 1

4(dn/dε)Γ2 ≡ 1
2N(0)Γ2. On the other hand, the condensation

energy of the superconducting state relative to the “pseudo-Fermi sea” normal (pseudo-)
groundstate is 1

2N(0))∆2 where ∆ is the energy gap in the material without magnetic
impurities. Thus, we expect superconductivity to become energetically unfavorable even
at T = 0 (i.e. Tc → 0) when Γ ∼ ∆. It is amusing that while the numerical factors in the
above argument are clearly rather arbitrary, the exact criterion for the disappearance
of superconductivity does in fact turn out to be Γ = ∆ (see below). If for a pure
material (in the absence of nonmagnetic impurities), we introduce the relaxation time
τK against T -violating effects, so that Γ ≡ ~/τK , and the corresponding mean free path
lK ≡ vF τK , and recall the definition of the Pippard coherence length ξ0, this criterion
can be rewritten lK = ξ0/π.

Now let us turn to a more exact calculation. In the general case, the presence of
terms like JiS

x
i σx(ri), in the Hamiltonian means that the normal-state eigenfunctions

are not in general eigenstates of spin, and the formulae then become rather messy: cf. de
Gennes section 8.1. Let us therefore specialize to a rather artificial case which gives
the essentials, namely one in which the impurity spins are constrained to lie along the
z-axis, with however a random sign (and, still at random positions). Then the normal-
state eigenfunctions can (indeed must) be chosen to be eigenstates of σz: we label them
φn↑(r), φn̄↓(r). Since we wish the pair wave function F (r, r) to be as large as possible,
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we pair with opposite spins; we write the BCS wave function in the form

ΨBCS =
∏
n

(un + vna
†
n↑a

†
n̄↓)|0 > (6)

where the states n and n̄ are for the moment undetermined (and in particular are not
necessarily energy eigenstates). We can then go through the standard deviation of the
BdG equations as illustrated in lecture 11, with one important difference: the quantity
un is associated with “spin up” and vn with “spin down” and the relevant single-particle
Hamiltonians are therefore different: in fact, the BdG eigenstates taken the slightly
modified form:

Ĥ0,↑un(r) + ∆(r)vn(r) = Enun(r)

−Ĥ∗
0,↓vn(r) + ∆(r)un(r) = Envn(r)

(7)

where we defined
Ĥ0σ ≡ p̂2/2m+ V (r) + J

∑
i

Sz
i σ(r− ri) (8)

with V (r) the spin-independent part of the one-particle potential.
Note that Ĥ0↓ is the time-reverse of Ĥ0↑ i.e., formally, if K̂ is the time-reversal

operator then K†Ĥ0σK = Ĥ∗
0,−σ.

In general the solution of equations (7) is complicated and may require numerical
computation. However, in the limit T → Tc (so that ∆(r) → 0) a very elegant method
of solution is available1. In the normal state, (∆(r) ≡ 0) the solution of the equations
(7) is simply

u0
n(r) = φn↑(r), v0

n(r) = 0, (εn > 0) En = εn↑ (9)

u0
n(r) = 0, v0

n(r) = φn↑(r), (εn < 0) En = εn↓

where the sets φn↑(r) and φ∗n↓(r) each form a complete set (provided we include the
εn < 0 solutions for φn↑(r), etc.). We can then expand the first-order terms as2

u1
n(r) =

∑
m6=n

enmφm↑(r)

v1
n(r) =

∑
m6=n

dnmφ
∗
m↓(r)

(10)

Let us insert u1
n(r) into the first BdG equation, multiply by φ∗m↑(r) and integrate. In

this way we obtain

(|εn↑| − εm↑)enm =
∫

∆(r)φ∗m↑(r)v
0
n(r)dr (11)

1For the next four pages, I follow closely the discussion in de Gennes sections 7.1 and 8.1–2, with
minor variations. For an alternative derivation which does not use the BdG equations, see AJL QL §5.9

2The diagonal terms emm can always be chosen zero by a suitable phase choice for u0
n.
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and similarly for the second equation, multiplying by φm↓(r) and integrating,

(|εn↑|+ εm↑)dnm =
∫

∆(r)φ∗m↓(r)u
0
n(r)dr (12)

Now, the self-consistency equation for ∆ has the form

∆(r) = V0

∑
n

un(r)v∗n(r) tanhβEn/2 (13)

Where we substitute the form (10) of un(r) and vn(r) in the RHS, the zeroth-order
term gives zero since we automatically have u0

n(r)v0
n(r) = 0. The terms linear in ∆ give

an expression of the form
∫
K(r, r′)∆(r′)dr′, where K(r, r′) is given after a little algebra

by the expression

K(r, r′) = V0

∑
nm

{u0
n(r)u0∗

n (r′)φ∗m↓φm↓(r)(r′) tanhβ|εn↑|2
|εn↓|+ εm↑

+

v0∗
n (r)v0

n(r′)φ∗m↑(r
′)φm↑(r) tanhβ|εn↓|/2

|εn↓| − εm↑

} (14)

which is a generalization of de Gennes equation (7.8). Using the fact that the second
term only exists for εn↓ < 0 and so tanhβ|εn↓|/2 ≡ − tanhβεn↓/2, and interchanging n
and m in the second term, we can write this in a more compact form:

K(r, r′) = V0/2
∑
nm

{tanh(βεn↑) + tanh(βεm↓)
εn↑ + εm↓

× φn↑(r)φm↓(r)φ∗m↓(r
′)φ∗n↑(r

′)
}

(15)

K(r, r′) is the kernel of the linearized gap equation

∆(r) =
∫
K(r, r′)∆(r′)dr′ (16)

it is expressed entirely in terms of the normal-state eigenfunctions φmσ(r). In the “pure
BCS” case, where the eigenstates are mutually orthogonal plane waves, we may take
∆(r) = const, and it may be straightforwardly verified that the only contribution to
the integral over r′ in equation (16) comes from m ≡ k, n ≡ −k; we thus recover the
BCS equation for Tc. A slight generalization of this argument applies to the case of
nonmagnetic disorder.

We now ask: is it possible to relate K(r, r′), and hence the gap equation, more
generally to some experimentally measureable properties of the normal phase? Actually,
this is a question of rather general interest, for example in cases where the physical
conditions, and hence ∆(r), vary substantially in space: in fact, in such cases analysis of
equation (15) recovers for us the GL equation, with an identification of the parameters
entering it: see de Gennes sections 7.1–2. However, we are interested in the case where
the impurity distribution, while microscopically random, is on average homogenous. To
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analyze this, and some other similar cases, it is useful to transform the expression for
K(r, r′) somewhat.

Step 1 is to note that because of the identity

tanhβε/2 = 2kBT
∑

n

1
ε− i~ωn

(17)

where ω ≡ (n+ 1/2)2πkBT and the sum runs over all positions or negative integers, we
can write the expression involving the ε’s as

2kBT
∑
ωm

1
εn↑ − i~ωm

1
εm↓ + i~ωm

(18)

We can then introduce continuous variables of integration ε, ε′ such that
∑

n →
∫
dεN(0),

and a quantity

Q(ε, ε′ : r, r′) ≡
∑

n

∑
m

δ(εn↑ − ε)δ(εm↓ − ε′)φn↑(r)φm↓(r)φ∗m↓(r
′)φ∗n↑(r

′) (19)

Then

K(r, r′) = V0kBT
∑
ω

∫
dε

∫
dε′

Q(εε′ : rr′)
(ε− i~ω)(ε′ + i~ω)

(20)

Step 2. (this is the trickiest): We now argue that since the states near the Fermi
energy in the normal phase are in no way “special,” the quantity Q(εε′ : rr′) is very
insensitive to the “center of mass” variable (ε + ε′)/2, and thus we can replace3 the
quantity

∑
n

∑
m δ(εn↑−ε)δ(εm↓−ε′) by (ε−ε′)−1

∑
mn(1−fn↑)fm↓ δ

(
εn↑−εm↓−(ε−ε′)

)
,

where the f ’s are Fermi functions. Thus

Q(ε, ε′ : r, r′) = Q(ε− ε′ : r, r) =
∑
nm

fm↓(1− fn↑)δ
(
εn↑ − εm↓ − (ε− ε′)

)
/(ε− ε′)

×φm↓(r)φ∗m↓(r
′)φ∗n↑(r

′)φn↑(r) (21)

Equation (21) looks very reminiscent of the imaginary part of a correlation function. In
fact, let us for orientation consider the case where Ĥ0 is real and thus the φm↑,↓(r) can
be chosen real. Then we can, trivially, add and remove complex conjugation, and thus
rewrite Q in the form

Q(ε−ε′ : r, r′) =
∑
mn

fm↓(1−fn↑)φ∗n↑(r)φ
∗
m↓(r)φm↓(r′)φn↑(r′)δ

(
εn↑−εm↓−(ε−ε′)

)
/(ε−ε′)

(22)
But the expression on the RHS is simply the imaginary part of the normal-state corre-
lation function 〈〈S+(r)S−(r′)〉〉(ω) for ω = ε − ε′! The great advantage of this result is
that we can now use our phenomenological knowledge of the behavior of such correlation
functions in the normal phase to calculate Q and hence the kernel K(r, r′).

3This follows because in the latter comparison in view of its antisymmetry with respect to ε− ε′, can
replace (1− fn↑)fm↓ by 1

2
{(1− fn)fm − (m 
 n)} = 1

2
(fn − fm) and

R ∞
0

f(E + ω)− f(E − ω) = 2ω
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At this point, it is convenient to make the ansatz that ∆(r) is approximately constant
in space; this is likely to be true if the distribution of impurity potentials, magnetic
and nonmagnetic, is homogeneous and there are no other sources of inhomogeneity.
Substituting into the linearized gap equation,

∆(r) =
∫
K(r, r′)∆(r′)dr′ (23)

and integrating over r and r′, we see that it becomes (ω → ωm in the Matsubara sum
to avoid confusion)

1 =
1
v

∫∫
K(rr′))drdr′ (v ≡ volume)

=
1
v
V0kBT

∑
ωm

∫∫
dεdε′

(ε− i~ωm)(ε′ + i~ωm)

∫∫
Q(ε− ε′ : r, r′)drdr′

= V0kBT
∑
ωm

∫∫
dεdε′

(ε− i~ωm)(ε′ + i~ωm)
1
v

Im 〈〈S+S−〉〉(ε− ε′)/(ε− ε′)

(24)

where 〈〈S+S−〉〉(ω) is now the correlation function of the total spin of the system. This
quantity is exactly conserved in the absence of spin-flip scattering. In the presence of such
scattering, an obvious ansatz is simple exponential relation, S+(t) = S+(0) exp(−t/τs)
where τs is the spin relaxation time. This gives (in the “electron-gas” model of the
normal state).

〈〈S+S−〉〉(ω) =
N(0)

1 + iωτs
(25)

so that Im 〈〈S+S−〉〉(ω)/ω = τsN(0)
1+ω2τ2

s
. Hence the gap equation becomes

1 = V0N(0)kBT
∑
ω

∫∫
dεdε′

(ε− i~ω)(ε′ + i~ω)
(τs/(1 + (ε− ε′)2τ2

s ) (26)

The double integral turns out to be simply 2π/(2|ω|+ 1/τs). Hence, finally,(
N(0)V0

)−1 = πkBT
∑
ω

1
2|ω|+ 1/τs

(27)

It is possibly instructive to rewrite the Matsubara sum as an explicit integral over en-
ergy. By evaluating the integral

∫ ∞
−∞

tanh βε/2
ε+iΓ dε by contour integration, we find that the

relevant form is (Γ = 1/2τs)

(N(0)V0)−1 = Re
∫ ε0

0

tanhβε/2
ε+ i/(2τs)

dε (28)

so that the energies which occur on the RHS are effectively “broadened” by an amount
1/2τs. This corresponds, intuitively, to the fact that on average the difference between
the mean energy of an up and down spin in a given orbital state is of this order.
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In the literature, it is conventional to subtract from equation (27) the τs = ∞ gap
equation (with transition temperature Tc0) and express the result in the form

ln(Tc0/Tc) = ψ
(
1/2 +

~
4πτskBTc

)
− ψ(1/2) (29)

where ψ(1/2) is the so called ”digamma function” defined by (Γ(z) ≡ Euler Γ-function)

ψ(z) ≡ Γ′(z)/Γ(z) = −0.577 +
∞∑

v=1

(
1/v − 1/(v + z)

)
− z−1 (30)

Note that the equation for the relative reduction of Tc is expressed entirely in terms of
the single dimensionless parameter α ≡ ~/(2πτskBTc).

A particularly simple result holds for the value of ~/τs which completely destroys
superconductivity. This is most easily obtained by evaluating the RHS of expression
(28) for β →∞ and comparing with the τs = ∞, T = 0 gap equation to obtain

Re
∫ εc

0
dε/(ε+ i/2τs) =

∫ εc

0
dε/

√
ε2 + ∆2 (31)

which for large εc yields 1/2τs = ∆(0).
The general behavior of Tc as a function of ~/τK is

N

gapped S
Tc

Tc0as shown. For small impurity concentration the slope
is given approximately by kB(Tc0 − Tc) ∼= π~/2τK . The
region just below the N-S transition temperature which
is shaded in the figure is very interesting. As shown
by Abrikosov and Gor’kov in their original paper, in
this regime that superconductor is gapless, that is, there
exist Bogoliubov quasiparticles of arbitrarily low energy.
I follow the discussion of de Gennes (Section 8.2):

Consider for definiteness the case T = 0, but with
a concentration of impurities close to critical; then we
may reasonably assume that the “gap” ∆ is small, and work as above to lowest order in
it. To order ∆ we have for the energy eigenvalues

En = |εn|+ |∆|2P
∑
m

|〈n|K|m〉|2

|εn|+ |εm|
, P = principal part (32)

If the one-electron part of the Hamiltonian is invariant under time reversal, then the
only state m occuring in the sum is degenerate with εn, so that

En = |εn|+ |∆|2/(2|εn|) (33)

This is the beginning of an expansion in ∆/|εn|: it clearly works for |εn| → ∞ but
fails for |εn| → 0. If the system is not invariant under K, then the second term is not
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singular as |εn| → 0 and the perturbation theory may work. Suppose in particular K
relaxes exponentially to zero with time constant τK , then

En = |εn|+ |∆|2P
∫
dε′ ImχK(εn − ε′)/(εn + ε′) (34)

= |εn|+ |∆|2P
∫

dε′
τK

1 + (εn − ε′|)2τ2
K

1
εn + ε′

= |εn|+
2|∆|2 |εn|

(2εn)2 + (~/τK)2

If now we take |εn| � ~/τK , this tends to

En = |εn|(1 + 2(∆τK/~)2) (35)

which can be arbitrarily small. The density of states is

Ns(ε) = N(0)dε/dE ∼=
{

1 + 2(∆/~)2
(2ε)2 − (~/τK)2

(2ε)2 + (~/τK)2
}

(36)

so for ε < ~/τK is less than the N-state value but for ε > ~/τK greater. [cf. de Gennes
Fig. 8.5.]

The above considerations work for most kinds of pair-breaking effects. However,
we should always bear in mind that solutions we have obtained are at most variational
ansatz, and we cannot exclude that there may exist other solutions which as it were
differ by a finite amount from the simple perturbation-theoretic ones. As an example,
consider the case of a constant finite Zeeman field (assumed to act only on the spins and
not on the orbital degrees of freedom). We could follow through the above calculation,
but now the spectrum of S+ is a δ-function at ε − ε′ = 2µBH, the energy necessary to
flip a spin. Correspondingly, the zero-T linearized gap equation becomes

(N(0)V0)−1 =
∫ εc

0

dε

ε+ µBH
∼= ln(εc/µBH) (37)

(where in the last equality we assume εc is large). The zero-field T = 0 gap ∆ satisfies
the relation

(N(0)V0)−1 =
∫ εc

0

dε√
ε2 + ∆2

∼= ln(2εc/∆) (38)

and thus the critical field at T = 0 should apparently be given by µBH = ∆/2.
However, this conclusion is not correct. To see this, let us compare the energies of

the normal state in field H, and the paired state obtained by refusing to let the particles
polarize in the field and then proceeding as if in field 0. Relative the normal state in
zero field, the first has energy −(1/2)µ2

BH2(dn/dε) = −µ2
BH2N(0), while the second has

energy (cf. Lecture 6) −(1/2)∆2N(0). Thus the second is stable for µBH < ∆/
√

2, i.e.
beyond the limit given by the perturbation calculation. The latter is actually the limit
of metastability of the N phases, i.e. the “supercooling” field. cf. Maki and Tsuneto,
Prog. Theor. Phys. 21, 945 (1964).

(A further complication: FFLO state).


