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Thermodynamic and response properties of superconduc-
tors (other than EM)

Recap: For any temperature < T, superconductor characterized by ‘energy gap’ Ag(7T)
which under normal conditions — A(T") [independent of k| for |ex| < kT,. Quan-
tity A(T') satisfies gap equation, — 0 at 7. and — const (= A(0) ~ 1.75kpT;) for
T — 0. Many body density matrix is product of density matrices over ‘occupation
space’ of k, T, —k, | and is diagonal with respect to 4 states:

|GP) = uy|00) + vy |11)
|EP) = v |00) — uy[11) E =2E(T)
[BP) = [10), [01) E=E(T)

with uxvx = Ax/2Ex: here Eyx = (ef + ]Ak]2)1/2.

Most important expectation value characterizing the S phase is the ‘pair wave function’

F(r) = (¥ (r)y1(0)) = > Fxexpikr, Fx = (a_k|akq).
We saw in Lecture 6 that

Fy = uvi tanh ﬁEk/Q = (Ak/QEk) tanh BEk/Q (1)
and so A
F(r)=>" ﬁ tanh(B8Ey/2) exp ikr (2)
k

In the case of s-wave pairing, Ak is not a function of k and we can write

o dQy S sin kr
Zk:exp ikr = N(0) /dek /47r exp ikr = N(0) /dek . (3)
0 N
F(r) = F(r) = N(0) / dex S”;r i ﬁ tanh(B8E/2) (4)

For the moment, no restrictions on [dex (though lower limit cannot be < u!). We will
assume in what follows
T. < ep (5)

and hence kp&’ > 1 where ¢ ~ hvp/A(0) (see below), as found experimentally.

3 Regimes:

(1) For r < kp~ !, integral dominated by k > kg, i.e. |e] = ep > T. (or A). In this
regime, behavior of ‘exact’ Fy similar to that of 2 particle wave function 1y, and
Ey — |ex|, tanh SFy /2 — 1. Hence, apart from overall constant, wave function in
this regime is that of 2 particles at Fermi energy colliding in free space.
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(2) For r > kp~! but 7 < hop/A (~ &, see below), energies entering integral are
mostly > A, and so again can put Eyx — |ex|, tanh SEy /2 — 1. If also Ay ~ const
in this regime (true provided ‘range’ of Vi ~ €r), then in this regime

F(r) =~ A(T)N(0) /dﬁk ;;r;i; ~ AT)N () sin kpr /de cos(er/hve)

2kpr 14
1 sin kpr
~ —A(T)N(0) x In factor (6)
2 kFT

where the In factor is crudely ~ Inr/¢, (£ ~ hvp/A). This expression is, apart
from a multiplying constant and the In, essentially the wave function of the free
particles in an s-state at the Fermi energy:

D) ~ Z ik sin kpr (7)

krr
K| =k F

(3) The most interesting regime is r 2 hvp/A. Here the relevant energies are all
< kT, and we can write (again approximating k ~ kp in denominator, etc.)

Fr) EA(T)N( sin kpr /‘X’d6 cos(er/hup) tanh 3+/€2 + A2(T) /2
2 ker Jo €2+ A%(T)

(a=)
=

sin kpr

= A(T)N(0) x J(r,A, ) (8)

kF’I”

Since A/A(0) = f(T'/T¢) , J can in fact be a function only of the variables ~ A(0)
and T/T,.

Consider two limits:

(1) In the limit 7' — 0 define &' = hvp/A(0), then

© Cos T

= dr ————
0o Var+(r/E)?

This expression is in fact the Bessel function Ko(r/¢’): for small values of the
argument, it diverges as In(&’/r) [cf. above] while for large values we have

J(r) 9)

J(r) ~ exp —V2r/¢ (10)

Thus the quantity & = hop/A(0) characterizes (to an order of magnitude)
the ‘radius’ of a Cooper pair. (In the literature, it is conventional to use the
quantity & = hvp/7A(0) = 771¢ known as the Pippard coherence length).

(2) In the limit T'— T. the gap A(T) tends to zero, and the expression for J(r)
becomes
> de

J(r) :/0 - cos(re/hvp) tanh G.e/2 (11)
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or introducing &"” = hvp /kpT, (~ &')

*d
J(r) :/0 % cosxtanhﬁ = f(r/&" (12)

Again it is clear that J diverges as In(r/¢"”) for r — 0, and somewhat less
obvious (but true) that it converges exponentially for r > &”. Thus as T —
T., pair radius is ~ £”: note that this is of the same order as &' (or &) and
doesn’t diverge in this limit.

In intermediate range of T', J is somewhat complicated but still has range ~ &'.

Normalization: Consider the quantity:
N = /|F |2dr— tanhQ(ﬂEk/Q) (13)

It is clear that the main contribution comes from |e| < A(T), kg1, where we can ap-
proximate A(T') ~ A(0). Thus N = |A(T)|2N(0) [;°(de/4E?) tanh® BE/2. For T — 0,
this is ~ N(0)A(0); for T — Ty, it is ~ N(0)|A(T)|?/T. (Interpretation as ‘number of
Cooper pairs’).

Thermodynamics

The most directly observable property is the specific heat ¢,(7"). Recall that in the
normal phase we have

en(T) =T + BT? (14)

y=" <C$> kp? ~ nkp/er, B~ nkpfp®
Since for T ~ T, we usually have T,/er < (T./0p)>, phonon contribution is usually
negligible (if not, it can be subtracted out since it is expected to change little in the
superconducting phase). Note in type I superconductors, ¢s can be measurable not only
directly but from H.(T).
To calculate ¢4(T'), can either (a) calculate temperature-dependent mean energy F(T)
and differentiate; (b) calculate entropy S(7T') and use ¢s = T'dS/dT. Do latter:

=3 Su(1) (15)
k

For each ‘pair space’ k T, —k, |, we have

Sk(T) = —kg Y _ pnInp, = —kp(Pap In Pop + 2Pgp In Pap + Pep In Pip) (16)

n
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Since Pap : Pgp : Pep = 1 : e PPk : ¢~ 2Pk this gives

BEx

—i—ln(l—l—e_ﬁEk)} (17)
where recall that Ex = Ex(T). When we differentiate with respect to temperature, the
explicit d/df gives a contribution to c of (1/2)kp%sech? 3E) /2, and the dependence of
FEy on T gives a contribution ﬁElzldEk/dﬂ times this. Thus

1
es/kp =5 32 (Ex + BdEy/dB) Ex sech® BEy /2 (18)
k
(A) In limit " — 0, can neglect the second term: result is thus the specific heat of a

gas of independent Fermi particles of fixed energy Ex. [note one k contains both
k T and -k [], i.e.,

2F
E(T) = Ekj eﬁTir ¢s(T) = dE/dT (19)
Explicitly,
¢s(T)—0 = const F%/[A(0)]*/*(dn/de) exp —BA(0) (20)

hence can measure zero-T' gap A(0).

(B) In limit 7' — T, put Ex — |ex| except in dEy/df, then first term simply gives
N-state specific heat. The difference between the S- and N-state specific heat at
T, is therefore given by

1
Acan = 5 kpB? Y | Bic (dEic/dB) sech® Blex /2 (21)
k
— LB ATy (dn/de) / sech? Blel/2 — 26, (22)
4 dp ‘ 0
1 [(dn d
== (=) |-—= A¥T 2
() L] >
Now for T — T, BCS gap equation gives A?(T) = (3.06 kgT.)*(1 — T/T.) so

Acs, = (1/2)(3.06 k) T, (dn/de) (24)

or

Acsn/cn(T,) = (1/2)3.06%/(7%/3) = 1.43
Acgp/cn(Te) = 1.43 (25)

Note, refers to electronic contribution only

in reasonable agreement with experiment on most superconductors other than Pb
and Hg, where the experimental value is larger (see Table in Kuper p. 36: ratio is
1.15-1.6 for most elemental superconductors, 2.07 for Nb, 2.1 for Hg, and 2.65 for
Pb).
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Response to external fields

Spin susceptibility x: in real life, if apply magnetic field, couple to both spin + orbital
motion. Can sometimes separate out ‘spin’ effect by using very thin/dirty samples. Usual
measurement is from Knight shift. Assume for the moment simple BCS model, and in
particular neglect any Landau Fermi liquid-type effects. Then apply weak field:

Magnetic field cannot shift energy of states |00) or |11) since these both have total
spin 0. But shifts energy of |10) and |01):

Ex(1,0) = BEx —pugH, Ex(0,1) = Ex + ugH

exp —f(Ex — upH)
(14 exp —3Fx)?

(neglect 2nd-order changes in normalization),

Pi(1,0) ~

etc. (26)

exp —f3(Ex — pH) — exp —f(Ex + upH)
M = P (1,0) = P(0,1))
,uBZ( k(1,0) — Pi( “BZ (1 + exp —BEy)?

fexp —[Ex 2 dn
~2ubH -
i Zk: (1+ exp —[Ey)? KB de

/ de (8/2) sech®(BE/2)  (27)

0

Since X, = p3(dn/de), this gives

X(T)/xn = /Ooode (8/2)sech?(BE/2) = Y(T/T.) « Yosida function (28)

The Yosida function is characteristic of the response to fields which cannot affect the
Cooper pairs: it is in a sense a measure of the ‘density (fraction) of normal component’.
For T'— 0 Y tends to zero exponentially: for 7' — T, , it is equal (in the simple BCS
model) to 1 —2(1 — T/T.) (The number 2 is exact!).

Normal density p,: momentum of |00)x and [11)y is 0, of |10)y is hk etc. Let us
imagine a probe which does not affect the pairs, but shifts the energies of the BP states
by Ex(1,0) — Ex — hvk, Ex(0,1) — Ex + hvk. Such a probe is a uniform (in space)
transverse vector potential A (actually v = A/m), if we assume for the moment it does
not act on the pairs. We are then interested in the mass current (momentum density)
given by

P = hk(P(1,0) - Pi(0,1)) (29)

It is clear that the analysis goes through as for x with A vk replacing upg: the average
of (vk)? over the Fermi surface gives (1/3)v2kp?. Hence
— (1/3)(dn/de) ke Y (T/T,) v (30)
In the normal phase P is just (1/3)(dn/de) i2kp? v, so define p,/p as P/P,,:
pulp = Y(T/T) (31)

[Note: in general it is difficult to realize this thought-experiment!]



PHYS598 A.J.Leggett Lecture 7 Thermodynamic and response properties of superconductors 6

Fermi-liquid effects

These are the most easily modeled by the molecular-field technique, which gives the
general result (e.g.) that if x is the ‘free-superfluid-gas’ expression then

xo(T)

D = T T nol@) )
Since x0(T') = p3(dn/de)Y (T), this gives at once
n/de)
W(r) = QLB Ry = (e (33)
" (1+ F)Y(T) 5

xX(T)/xo = m

In superfluid *He, where F{ is large, the corresponding effect is quite dramatic.t

Note that the electron-phonon renormalization effects do not cancel in the superfluid
phase as they do in the normal phase, so in principle we can extract F{§ from the
superfluid-state measurement of x (or an equivalent quantity).

Normal density
Again the molecular-field technique can be applied. Quote result only for translational-
invariant system:

Pno _ nm*Y (T
T+ (1/3)F; py (dnfde)Tpon 1+ (I/3)FY(T)

Pn = (35)

or

(T + (A/3)FY)Y(T)
/P =17 (1/3)F}Y(T)

(36)

Note that there is now no cancellation between m*/m and 1+ (1/3)F} as in the normal
phase. Thus, in a translation-invariant system (such as 3He) it is possible to measure I}
exactly in the superconducting state, independently of m*. (but beware strong coupling
effects!). In the limit T — T, p,/p tends to 1 as we expect.

 3He is not singlet-paired, so the result must be generalized.



