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Microscopic Properties of BCS Superconductors (cont.)

References: Tinkham, ch. 3, sections 7–9

Notations: In last lecture, examined inter alia responses of system to probes that couple
respectively to total S and total (transverse) current J. Both S and J have special
property that they are diagonal in Bogoliubov quasiparticle operators, e.g. S =∑

σ σα†pσαpσ. If we consider probe which does not have this property, life becomes
more complicated.

1. Tunnelling

Two metals (N or S) separated by thin oxide-layer

oxide-layer 
barier

metal 1 metal 2

s.p. states k s.p. states q

barrier, voltage drop ∆V applied.
What current I flows from 2 to 1? Usual description

of tunnelling: Bardeen-Josephson Hamiltonian:

ĤT =
∑
kqσ

(Tkqσa†kσaqσ + H.C.) (no spin flip) (1)

where k denotes a state in 1 and q are in 2. Usual
assumption: no special symmetries, etc., in Tkqσ, also
doesn’t depend appreciably on energy. [probably OK if
all relevant energies � barrier height.]

(a) Suppose both metals are normal:

2nd order perturbation theory: (neglect any dependence of Tkq on σ).

Pq→k =
2π

~
|Tkq|2nqσ(1− nkσ)δ(εk − εq)

Pk→q =
2π

~
|Tkq|2nkσ(1− nqσ)δ(εk − εq) (2)

⇒ I2→1 = −2πe

~
∑
kqσ

|Tkq|2(nqσ − nkσ)δ(εk − εq)

Suppose average over k̂, q̂, σ is |T |2 and this is not a function of ε or ε′, then summing
over σ,

I = −2πe

~
2|T |2

∫ ∫
dεdε′ ρ1(ε)ρ2(ε′)(n2(ε)− n1(ε′))δ(ε− ε′) (3)

where ρ1,2(ε) = single spin DOS at energy ε, and n1,2(ε) = thermal (or other) occupation
factor. Usually, ρ1,2(ε) ∼ N1,2(0). Then

I = −2πe

~
|T |22N1(0)N2(0)

∫
dε[n2(ε)− n1(ε)] (4)



PHYS598 A.J.Leggett Lecture 8 Microscopic Properties of BCS Superconductors (cont.) 2

Now in thermal equilibrium, n1,2 = f(ε− µ1,2), f = Fermi function. Also, to a very
good approximation, µ1 − µ2 = eV [note sign!]. Thus1

I = −2πe

~
|T |22N1(0)N2(0)

∫ ∞

−∞
dε[f(ε + eV )− f(ε)] (5)

It is clear that independently of temperature the
∫

is simply −eV . Hence Gnn ≡
I2→1/V21 is given by

Gnn =
2πe2

~
2N1(0)N2(0)|T |2 (6)

The matrix element |T |2 is of course very sensitive to the details of the junction,
but crucial point is that it is not expected to change (much) when one or both metals
become superconductors.

(b) Now suppose one metal, for definiteness 1, is S with energy gap ∆, the metal (2)
remaining N .

Assume for the moment zero temperature and let µ2 be > µ1. The ME Tkqa†kσaqσ must
now be expressed in terms of Bogoliubov operators for metal 1:

Tkqa†kσaqσ = Tkq(ukα†kσ + σvkα−k,−σ)aqσ (7)

The term in vk does not contribute to Pq→k at T = 0, since impossible to destroy a
Bogoliubov quasiparticle, so

Pq→k =
2π

~
|Tkq|2u2

kδ(Ek − εq)nq (8)

The return current, Pk→q, is similarly given by the Hermitian conjugate of (7) (read
vk = v−k):

Pk→q =
2π

~
|Tkq|2v2

kδ(Ek + εq)(1− nq) (9)

since e− in 2 created.
If we choose eV for definiteness to be positive, then the return current is zero (at

T = 0) and the total current 2→ 1 is given by

I2→1 = −2πe2

~
∑
kqσ

|Tkq|2u2
kδ(Ek − εq)nq (10)

where nq = θ(eV − εq): note that for V = 0 the current vanishes as it should. Now
u2
k = 1

2(1 − εk/Ek), and provided |Tkq|2 doesn’t depend appreciable on Ek (usually
true), the contribution of the εk-term vanishes, because states with ±εk have the same
Ek: thus we can simply set the u2

k = 1/2.

1Provided eV, kBT � bandwith, it is clear that only states close to Fermi surface contribute.
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Differentiating with respect to V , we therefore finally find:

Gns(V ) =
1
2

2πe2

~
|T |2N2(0)

∑
k

δ(Ek − eV ) (11)

or2

Gns(V )/Gnn = Ns(eV )/Nn(0), Ns(eV ) ≡ 1/2
∑
k

δ(Ek − eV ) (12)

so a measurement of Gns(V ) at T = 0 is a direct measure of the quasiparticle DOS at
excitation energy E = eV . Note that there are 2 values of εk corresponding to given Ek.

What does it look like? We have Ns(E)dE = Nndε, so

Ns(E)/Nn = dε/dE = E/|ε| = E√
E2 −∆2

(13)

2. Coherence factors

Consider an operator of the form∑
kk′σσ′

Vkk′σσ′(t)a
†
kσak′σ′ ≡ Ω̂ (14)

and carry out on it the Bogoliubov transformation. It will generate terms of the type(a)
αα (b) α†α† (c) α†α (or αα†). Terms of type (a) and (b) create or destroy 2 quasiparticles
and thus correspond to a change in energy of |Ek+Ek′ | ≥ 2∆(T ). Thus, if the frequency
of the perturbation V is < 2∆(T ), they will not be able to generate real transitions.
On the other hand, terms of the form α†α correspondent to scattering of Bogoliubov
quasiparticles and induce transitions of frequency Ek − Ek′ , which can be arbitrarily
small and have either sign. However, since they involve αp they can be effective only at
finite T where 〈np〉 6= 0.

2It is convenient to put the factor of 1/2 in the df so that in the limit ∆ → 0, (E → |ε|), we restore
the normal-state result.
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In transforming Ω̂ into Bogoliubov quasiparticle operators, we must remember that
the transformation involves σ: (cf. Lecture 6).

a†kσ = ukα†kσ + σvkα−k,−σ (15)

etc. Carrying out the transformation explicitly and using the ACR’s:

Ω̂ =
∑

kk′σσ′

Vkk′σσ′(t)
{

uku′kα†kσαk′σ − vkv′kσσ′α†−k′,−σ′α−k,−σ +

σ′ukvk′ α†kσα†−k′,−σ′ + σuk′vkα−k,−σαk′σ

}
(16)

It is convenient to redefine the variables of summation and introduce the notation θσσ′ ≡
σσ′ = +1 if σ = σ′,−1 if σ 6= σ′. We further assume (note order of indices) that

V−k′,−k,−σ′,−σ = ηθσσ′Vkk′σσ′ (17)

where η = ±1, i.e. V is even (type-I) or odd (type-II) under time reversal. Thus the
expression for Ω̂ becomes

Ω̂ =
∑

kk′σσ′

{
Vkk′σσ′(ukuk′ − ηvkvk′)(α

†
kσαk′σ + ηθσσ′α

†
−k′,−σ′α−k,−σ) + (18)

(ukvk′ + ηvkuk′)(α
†
kσα†−k′,−σ′ + ηθσσ′α−k,−σαk′σ′)

}
As emphasized by Tinkham, the factor ηθσσ′ is unimportant because it relates pro-

cesses which are mutually incoherent, but the factors of η in the overall coefficients are
crucial. What it means is that the effective matrix for scattering of the Bogoliubov
quasiparticle is multiplied, relative to that for N-state particles, by factor

(ukuk′ − ηvkv′k) (19)

Thus the transition probabilities are multiplied by this factor squared:

(ukuk′ − ηvkvk′)2 =
1
2
(1 +

εkεk′

EkEk′
− η

∆2

EkEk′
) (20)

Provided that V is not strongly dependent on εk (usually true) then when we sum over
k and k′ this expression multiplied by δ(Ek−Ek′ − ~ω), the εkεk′ terms cancel, and we
are left with a factor

Rη(Ek, Ek′) =
1
2

(
1− η

∆2

EkEk′

)
(21)

In the limit εk, εk′ → 0 (Ek, Ek′ → ∆) this tends to 0 for η = +1 and 1 for η = −1.
In the same way, the factor multiplying the two-quasiparticle creation operator term
α†k,σα†−k′,−σ′ , namely (ukvk′ + ηvkuk′)2, becomes after the same summation over ±εk,

R̃η =
1
2

(
1 + η

∆2

EkEk′

)
(22)
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which has the opposite behavior to R.
Let’s now consider an expression of the general form

J(ω) ≡
∑
m

Z−1e−βεm
∑

n

|〈n|
∑

kk′σσ′

Vkk′σσ′a
†
kσak′σ′ |0〉|2δ

(
ω − (εm − εn)

)
− (kσ 
 k′σ′)

(23)
where the states m are energy eigenstates of the many-electron system with (many-
electron) energies εm, and the matrix element Vkk′σσ′ is even or odd under time reversal
as discussed above. Moreover, assume that the effect of averaging over the directions of
k and k′ doesn’t introduce any special energy-dependence, so that the replacement∑

kk′σσ′

|Vkk′σσ′ |2 → (dn/dε)2
∫

dε

∫
dε′ |V |2 (ε ≡ εk) (24)

is legitimate (depending on the actual structure of Vkk′ , the quantity |V |2 may itself
involve factors of dn/dε). As we shall see, the expressions for the ultrasonic attenuation,
nuclear spin relaxation and electromagnetic absorption are all of this type.

In the normal phase, we get, allowing for both “forward” and “backward” process,

Jn(ω) = |V |2(dn/dε)2
∫∫

dεdε′
(
f(ε)− f(ε′)

)
δ
(
ω − (ε′ − ε)

)
(25)

= |V |2(dn/dε)2
∫

dε
(
f(ε)− f(ε + ~ω)

)
= |V |2(dn/dε)2~ω

Now consider the S phase, and, suppose for the moment that ω < 2∆(T ) so that
only “scattering” terms contribute. The difference, now, is that all ε’s (except for the∫

dε’s) are replaced by the corresponding E’s, and moreover the matrix element squared
contains a factor Rη(E,E′).3

Js(ω) = |V |2(dn/dε)2
∫∫

dεdε′
(
f(E)− f(E′)

)
Rη(E,E′)δ

(
ω − (E′ − E)

)
(26)

= |V |2(dn/dε)2 · 4
∫ ∞

∆
dE

E

ε

E′

ε′
(
f(E)− f(E′)

)
Rη(E,E′)

where E′ ≡ E + ~ω, ε′ ≡ ε′(E′), and as above Rη(E,E′) ≡ 1
2(1− η ∆2

EE′ )
Suppose now that we have not only ω < 2∆(T ) but ω � ∆(T ). Then we can expand

in ω and neglect terms proportional to ω or higher except in the difference f(E)−f(E′),
which we approximate as −~ω(∂f/∂E):

Js(ω) = |V |2(dn/dε)2
∫ ∞

∆
dE (E2/ε2)

(
1− η

∆2

E2

)
(−∂f/∂E)× ~ω (27)

We see that there is a crucial difference between type-I (η = +1) and type-II (η = −1)
cases. For type-I the factor 1− η∆2/E2 ≡ ε2/E2 just cancels the E2/ε2, and we get the

3Note the overall factor of 4, coming from
R ∞
−∞ dε → 2

R ∞
∆

dE E
|ε|
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simple result (f(∆) ≡ (εβ∆ + 1)−1)

Js(ω : T )
Jn(ω)

=
2

eβ∆(T ) + 1
(type-I) (28)

For the type-II case, by contrast, there is no cancellation, and we get

Js(ω) = |V |2(dn/dε)22
∫ ∞

∆
dE(−∂f/∂E)[

E2 + ∆2

E2 −∆2
]× ~ω (29)

so that
Js(ω : T )

Jn(ω)
= 2

∫ ∞

∆
dE(−∂f/∂E)

E2 + ∆2

E2 −∆2
(type-II) (30)

This is actually logarithmically divergent in the simple isotropic-gap model: in real
life the divergence is suppressed by gap anistropy, impurity scattering or, if all else fails,
the finiteness of ω.

Two well known examples (needs some work, contrary to some textbooks!)

(a) US attenuation (longitudinal)4

The matrix element for absorption of a phonon of wave vector q by an electron of
wave vector k, spin σ, going off with k′ and spin σ′, is some slowly varying quantity
gkk′q [= f(q) only in the simplest models] × δσσ′δk′−k−q; since δ−k−(−k′)−q ≡
δk′−k+q, this is a type-I operator.

We therefore only need to justify the assumption that (despite the δ-function) the
angular integration leads to const

∫
dε

∫
dε′. The simplest way is to note that we

can write formally∑
kk′

δk−k′−q|gkk′q|2 = const
∫

d3k
∫

d3k′ δ(k− k′ − q)|gkk′q|2 (31)

= const
∫

dε

∫
dε′

∫
dΩk

∫
dΩk′ δ(k − k′ cos θ′ − q)δ(k sin θ − k′ sin θ′)δ(φ′)

where we took q to lie along the z-axis and k in the xz-plane. We have k =
kF + ε/vF , etc.: for q � kF (the usual situation) it is clear in the δ-function, the
kF part will dominate (since we know that ε is at most ∼ kBT/~vF), so to a good
approximation, the angular integrals introduce no extra energy dependence: (We
would need to examine the

∫
more closely to get factors of q, etc., right).

Thus, we expect the longitudinal US attenuation to satisfy the relation

αS(T )/αn =
2

eβ∆(T ) + 1
(32)

(for a comparison with experiment, see, e.g. Kuper Fig. 12.2).
4Transverse US complicated by Meissner effect
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(b) Nuclear spin relaxation

(treatment in some texts rather confusing!) In the original Hebel-Slichter ex-
periments, system was allowed to come to equilibrium (I ∼ H) in a finite field
H > Hc(T ) (so sample is N). Next field was turned off (system → S state), so
equilibrium value of nuclear spin I is zero, allowed to relax for a time t, then
field switched on again and nuclear spin measured, hence obtain its decay, fitted
to I(t) = I0 exp(−t/T1). Thus experiment measures T−1

1 (T ). In normal states,
T−1

1 ∝ const T (Korringa law).

The process which relaxes I involves a nuclear spin flipping down accompanied
by an electron spin flipping up, hence is proportional to the matrix element of
S+(r) =

∑
kk′ Jkk′ σ̂+a†kσak′σ′ =

∑
kk′ Jkk′a

†
k↑ak′↓ where J−k′,−k = Jk,k′ . This is

type-II (note role of θσσ′ !), so the relation between T−1
1s (T ) and the corresponding

state in the normal rate at that T is

T−1
1s (T )/T−1

1n (T ) =
∫ ∞

0
dE(−∂f/∂E)

E2 + ∆2

E2 −∆2
(33)

– a rise just below Tc (the famous Hebel-Slichter peak), followed by a drop to 0 as
T → 0. For comparison with experiment5 see e.g. Rickayzen Fig. 3-4.

(c) EM absorption.

At first sight this should be similar to ultrasound absorption (since both involve
the absorption of a photon (phonon) with scattering of an electron), the principal
difference being that since the ME is proportional to J , a T -odd operator, it is
type-II rather than type-I. Actually this analogy obscures an important difference:
we have cs � vF but c � vF and correspondingly, in the Sommerfeld (free-Fermi-
gas) model of the N state, the US absorption is finite but the EM absorption zero!
Thus to get any N-state EM absorption at all we need to take into account impurity
scattering, and in general the relation between σ1S(ω) and σ1n(ω) is complicated,
see e.g. Tinhham section 3.10.5. Simple formulas only result for σ1n(ω) ∼ const
over ∼ ∆; this is so if τn ∆ � 1 or l � ξ.

The operator corresponding to absorption of EM radiation of wave vector q and
frequency ω is the Fourier transform of the electric current j(r), i.e.

jq ≡
e~
m

∑
kσ

ka†k+q/2,σ ak−q/2,σ (34)

Since the EM wave is transverse, we have to project jq i.e., k, on the direction
⊥ q · (jq · Aq). It is clear that this perturbation is type-II. However, unlike the
case of nuclear spin relaxation, the relevant frequency ω can easily be > ∆(T ), so
we cannot neglect 2-quasiparticle creation. At zero T , this is the only process, and

5In original experiment HS observed rise only by a factor ∼ 2.
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we get for the real part of the A.C. conductivity at T = 0∗

σ1s/σ1n =
∫

dE/|ε|
∫

dE′/|ε′|{R̃−(E,E′)δ(~ω − (E + E′))} (35)

≡
∫ ∞

∆
dE · EE′

εε′

(
1− ∆2

EE′

)
E′ ≡ E + ~ω

It is clear that this expression vanishes for ~ω < 2∆(0): for ~ω > 2∆(0), it can be
expressed as an elliptic integral (see e.g. Tinkham section 3.9.3).

At finite T , the 2-quasiparticle creation term is multiplied by a factor

(1− f)(1− f ′)− ff ′ = 1− f(E)− f(E′) (36)

[note that since f(E) < 1/2, this is positive!]

In addition, we get a “quasiparticle scattering term” even for ω < 2∆(T ): this has
a structure qualitatively similar to that of the nuclear spin relaxation.

Further discussion of the static EM properties is given in Lecture 9.

∗I suspect that the apparent difference of (35) from Tinkham’s (3.94) is due to his use of a different
sign convention for E, E′.


