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Superconducting alloys: electrodynamics of clean and dirty
superconductors
References AJL QL 5.8. [Tinkham 3.10-11, de Gennes ch. 5]∗

Experimental fact: superconductivity fairly insensitive to nonmagnetic impurities, but
rapidly destroyed by magnetic ones (i.e., those corresponding to local moments). Why?
Consider in this lecture the case of spinless§ impurity potential, so

Ĥ = Ĥ0 +
1
2

∑
i

V (ri − rj), Ĥ0 =
∑

i

p2
i

2m
+ U(ri) (1)

U(ri) includes ‘random’ potential due to impurities (spin-independent and T-invariant).
Consider eigenstates of one-particle term Ĥ0. Since spin conserved, these are of form

|σ〉φn(r) with εn ≡ ξn − µ independent of |σ〉 (= | ↑〉, | ↓〉). If φn(r) is eigenstate, then
since by T-invariance Ĥ∗ = Ĥ so is φ∗n ≡ φn̄, which may or may not be different from φn

(doesn’t matter!). [In translation-invariant case, can if we like choose instead of exp±ikr
the real functions coskr, sinkr]

Anderson prescription: pair in time-reversed states φn| ↑〉, φn̄| ↓〉, i.e. if a†n↑, a
†
n̄↓

create these states,
ΨBCS =

∏
n

(un + vna
†
n↑a

†
n̄↓)|vac〉 (2)

Everything now goes through exactly as in translation-invariant case, though some for-
mulae have to be generalized. In particular, expression for contribution to potential
energy from pairing is

〈V 〉pair =
∫∫

V (r− r′)|F (r, r′)|2 drdr′ (3)

where F (r, r′) is defined by
F (r, r′) ≡ 〈ψ†

↑(r)ψ
†
↓(r

′)〉 (4)

and is now in general not a function simply of r− r′ as in the translation-invariant case.
If we define Fn ≡ unvn, then

F (r, r′) =
∑

n

Fnφn(r)φn̄(r′) (5)

Now we are generally interested in the value of F (r, r′) at short distances (typically
∼ k−1

D ) since it is only there that V is appreciable. Thus, we consider F (r, r). Since
φn̄(r) ≡ φ∗n(r), we get

F (r, r) =
∑

n

Fn|φn(r)|2 (6)

∗Tinkham goes into more detail than needed here. de Gennes is at about the right level but uses the
BdG equations, which we will get to in lecture 11.

§Magnetic impurities will be considered in lecture 12.
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The crucial point is that the quantity multiplying Fn is positive definite and its average
value is not much different from that of a plane wave. Thus the PE can be comparable
to what it was in the absence of the impurities. In fact, we have approximately

〈V 〉 ≈ V0

∑
nn′

FnF
∗
n′ = V0

∑
nn′

∆n

2En

∆n′

2En′
(7)

Since the KE is just the generalization of that for the translation-invariant case, i.e.

〈T 〉 =
∑

n

(1− εn/En)εn (8)

the gap equation similarly comes out as

∆m = −V0

∑
n

∆n

2En
tanhβEn/2 (9)

As in the translation-invariant case it is clear that a possible solution is ∆m = const = ∆,
and the equation then reduces to

1 = −V0

∫ (dn
dε

)
dε

tanhβE/2
E

, (E ≡
√
ε2 + ∆2) (10)

The only difference with the translation-invariant case is that the DOS dn/dε ≡
∑

n δ(ε−
εn) is that in the presence of the impurities. But unless we are in or very close to the
limit of localization (which requires a much larger impurity concentration than normally
considered) the average number of states over an energy range� ∆ is very little affected,
so we can take dn/dε equal to the ‘pure’ value 2N(0) and take it out of the integral. It
is then clear that (in zero magnetic field) the thermodynamics is identical to that of the
pure system: in particular Tc should be very insensitive to nonmagnetic alloying.

Generalization: There are some cases where the impurity Hamiltonian is spin-dependent
but nevertheless preserves time-reversal invariance (example: spin-orbit scattering in
heavy metals). In this case, we can still pair in T-reversed states (though they are in
general not eigenfunctions of spin) and the same conclusions go through. For the case
of non- T-invariant perturbations, see lecture 12.

Behavior of the pair wave function

In general, if we write R ≡ (r1 + r2)/2, r ≡ r1 − r2 we have

F (r1, r2) ≡ F (R, r) =
∑

n

{
∆n

2En
tanhβEn/2

}
φ∗n(R + r/2)φn(R− r/2) (11)

As we have seen, for r = 0 this quantity is not strongly dependent on R and is close to
its value for the pure metal. For r 6= 0 it is also unlikely to be strongly dependent on R,
so we can imagine averaging over R and writing a quantity

F (r) =
∑

n

{
∆n

2En
tanhβEn/2

}
φ∗n(R + r/2)φn(R− r/2) (12)
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The quantity
∫

r2|F (r)|2 dr/
∫
|F (r)|2 dr can be taken as the mean-square radius of a

Cooper pair in the dirty metal. In the limit of no impurities the definition (12) reduces
to our earlier expression

F (r) =
∫
dk

∆k

2Ek
tanhβEk/2 · exp ikr (13)

and we saw this had a rms radius ∼ ~vF/∆ ≡ const ξ0. What about the ‘dirty limit’
(defined by mfp l . ξ0)?

Intuitive argument: F (r) will drop below its r = 0 value as soon as the difference
in the phase difference between φn(R + r/2) and φn(R− r/2) for different n which are
well represented in the sum, becomes ∼ 2π. We can calculate this by a semiclassical
argument: a wave packet with spread in energy ∆E will be dephased by ∼ 2π in a time
∆t ∼ h/∆E later. In this case, ∆E ∼ ∆ (or kBTc), so ∆t ∼ h/∆. Now, in a clean metal
the distance which the packet has travelled by time ∆t is the ‘ballistic’ time r ∼ vF∆t,
so we find that dephasing is more or less complete at r ∼ ~vF/∆ ∼ ξ0 in agreement with
the exact result. For a dirty metal, on the other hand, the behavior is diffusive and we
have r2 ∼ D∆t, where the diffusion coefficient D is (1/3)vFl (l = (elastic) mfp). Hence,
putting ∆t ∼ ~/∆ as above, we find for the pair mean-square radius

r2p ∼ D~/∆ ∼ (~vF/∆)l (14)

or in other words
rp ∼ (ξ0l)1/2 (15)

Thus the ‘radius’ of a Cooper pair is reduced in the dirty limit by a factor (l/ξ0)1/2.

Electromagnetic response of clean and dirty superconductors†

Confine ourselves to linear properties (in external field). Then, most generally, can
express EM response in terms of the reaction of the response of the electric current
Jµ(r, t) to the applied EM vector potential Aν(r′, t′):‡ since system invariant under time
translation, we have

Kµν(r, r′; t, t′) ≡ δJµ(r, t)/δAν(r′, t′) = Kµν(r, r′; t− t′) (16)

and can take the Fourier transform Kµν(r, r′;ω) with respect t− t′. Convenient for the
moment not to take spatial FT. Recall that E and B related to A by

E = −∂A
∂t

, B = curlA (17)

A static longitudinal vector potential (i.e. one such that A = A(r), curlA = 0 can
always be gauged away (A → A + ∇χ) and thus produces no physical effects. We work
in the appropriate (Landau) gauge, divA(r, t) = 0: A is ‘purely transverse’.

†Refs.: de Gennes pp. 137–143, 157–182, 195–6, 210–227; Schrieffer, sections 8.1–4; Tinkham, section
2.10

‡Since we can always choose gauge so that EM scalar potential φ(r, t) ≡ 0
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To calculate the response,we need to bear in mind that in the presence of a magnetic
vector potential the EM current J(r, t) has the form (apart from symmetrization)

J(r, t) =
∑

i

δ
(
r− ri(t)

) e
m

(
pi − eA(ri, t)

)
(18)

Therefore, there is an explicit ‘diamagnetic’ term− e2

m

∑
i δ(r−ri)A(ri, t) ≡ −n(r, t) e2

m A(r, t)
where n(r, t) is the density of electrons. It is usually an excellent approximation to set
n(r, t) ≡ n, the equilibrium density. Now, the perturbation terms in the Hamiltonian in
the presence of a vector potential A(r, t) are of the form

−
∫

J(r, t)A(r, t) dr +
1
2

∫
n(r, t)A2(r, t) dr (19)

where we define for convenience (up to symmetrization)

J(r, t) ≡
∑

i

δ
(
r− ri(t)

) e
m

pi (20)

The second term does not contribute to linear order, so we can write

Kµν(r, r′; t− t′) = K̃µν(r, r′; t− t′)− ne2

m
δ(r− r′) (21)

where K̃µν(r, r′; t − t′) is the standard response function δJµ(r, t)/δAν(r′, t′), i.e. the
response of J(r, t) to a field which couples linearly to it, and we took n(r, t) ≈ const ≡ n.
From standard response function theory, the Fourier transform of K̃µν(r, r′; t − t′) is
explicitly

K̃µν(r, r′;ω) = Z−1
∑
m

e−βεm
∑

n

〈m|Jµ(r)|n〉〈n|Jν(r′)|m〉
εn − εm + ~ω + iδ

+
〈m|Jµ(r)|n〉〈n|Jν(r′)|m〉

εn − εm − ~ω − iδ

(22)
where the εm are the many-body excitation energies of the system. The problem reduces
to the calculation of the expression on the RHS of (22).

Consider first the longitudinal case. We know that in this case, whatever the state of
the system, the total response to a static field, K̃µν(r, r′; 0)− ne2

m δ(r− r′) must vanish,
and this in fact turns out to be guaranteed by the f -sum rule.

Consider next the case of a normal system, i.e. one lacking LRO and again consider
the static limit (ω = 0). In this case, if the quantity A(r) is sufficiently slowly varying in
space, the system should not ‘know the difference’ between longitudinal and transverse:
so we expect that in this limit the result should be the same, i.e. δJ(r)/δA(r′) = 0 (no
Meissner effect). Explicit evaluation of the matrix elements for the normal Fermi system
confirms this. (For finite q, we get a small difference between L and T corresponding
to Landau diamagnetism). In the superconducting case, however, the LRO permits the
system to ‘know the difference’, and we have no a priori guarantee that the cancellation
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will occur even for ω = 0. The reason is that although the quasiparticles (normal compo-
nent) do not ‘know the difference’, the condensate does: it can flow only longitudinally,
however long the ‘wavelength’ of the disturbance!

To calculate the transverse K̃µν we can neglect the condensate and thus proceed as
in the translation invariant case by making the Bogoliubov transformation

a†nσ = unα
†
nσ + σvnαn̄,−σ (23)

etc. (un̄ ≡ un, vn̄ ≡ vn) Since the matrix element of the current between normal
eigenstates m, n is

Jmn(r) ≡ 〈m|J(r)|n〉 = −i~
(
φ∗m(r)∇φn(r)− φn(r)∇φ∗m(r)

)
(24)

it is odd under T-reversal, i.e. matrix elements are type II. Hence the effect is to multiply
(e.g.) the ‘2-particle creation’ terms by a factor

1
2
EmEn − εmεn −∆2

EmEn
(25)

as well as replacing εm → Em in the denominators and thermal factors. The resulting
expression is messy in general, so let’s specialize at this point to the case ω = 0, T = 0
(static zero temperature response):

K̃µν(r, r′; 0)T=0 =
∑
mn

1
2
EmEn − εmεn −∆2

EmEn

{
J (µ)

mn(r)J (ν)∗
mn (r′) + c.c.

}
(26)

At first sight, one cannot get much further without an explicit knowledge of the matrix
elements Jmn(r), which in turn would require a knowledge of the exact normal eigenstates
φm(r). However, an important observation is that the sum (26) is very similar to that
occurring in the normal-state conductivity σµν(r, r′;ω). In fact, it is easy to establish
that within the simple noninteracting electron gas picture, the latter is given by

Reσµν(ω) = ω−1
∑
mn

{
J (µ)

mn(r)J (ν)∗
mn (r′) + c.c.

}
(fm − fn)

π

2
δ(εm − εn − ~ω) (27)

(fm ≡ Fermi function). Let’s take the limit kBT � ~ω, where fm − fn can be approxi-
mated by ~ω ∂f/∂ε. Let us define a quantity (actually a function of r and r′)

Qµν(ε, ε′) ≡
∑
mn

{
J (µ)

mn(r)J (ν)∗
mn (r′) + c.c.

}
δ(εm − ε)δ(εn − ε′) (28)

The point of doing this is that Qµν(ε, ε′) is only weakly a function of (ε+ ε′)/2, and thus
can approximated by Qµν(ε− ε′; r, r′). Then we can write

K̃µν(r, r′; 0)T=0 =
∫∫

dεdε′
1
2
EE′ − εε′ −∆2

EE′ Qµν(ε− ε′; r, r′) (29)
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On the other hand, the above formula for σµν(r, r′;ω) becomes for kBT � ~ω

Reσµν(r, r′;ω) =
π

2

∫∫
dεdε′

∂f

∂ε
δ(ε− ε′ − ~ω)Q(ε− ε′; r, r′)

=
π

2
~

∫
dε
∂f

∂ε
Qµν(~ω) =

π

2
Qµν(~ω; r, r′) (30)

Finally, substituting (30) (backwards) into the formula for K̃ and adding the diamagnetic
term, we get

Kµν(r, r′; 0)T=0 =
2
π

∫∫
dεdε′

1
2
EE′ − εε′ −∆2

EE′(E + ε′)
Reσµν(r, r′; ε− ε′)− ne2

m
δµνδ(r− r′)

(31)
Thus, we have succeeded in expressing the ‘Meissner kernel’ Kµν(r, r′; 0) as a function
only of the gap ∆ and the nonlocal conductivity σµν(r, r′;ω) of the normal phase (for
kBT � ~ω).

For diffuse scattering and J and E parallel to the surface, the Chambers formula for
σµν is

σµν(r, r′;ω) =
e2

2π
vF

1
2

(
dn

dε

)
RµRν

R4
exp iωR/vF exp−R/l (32)

(l = mean free path) where R ≡ |r − r′|, This can be inserted in the boxed equation
above and the energy integrals calculated: the final result is very close to the formula
originally guessed by Pippard on phenomenological grounds, namely

Kµν(r, r′; 0) ≡ δJµ(r)
δAν(r′)

≈ − 3ne2

4πmξ0
RµRν

R4
exp−R(1/l + 1/ξ0) (33)

Thus, for a clean metal (l � ξ0), the ‘nonlocality length’ of the EM response is the
pair radius ξ0 (up to a numerical factor). For a dirty metal, however, this length is not
the pair radius (ξ0l)1/2 but rather the smaller mean free path l. Thus, if we define the
superfluid density ρs by the integral of −me2Kµν(r, r′; 0) over r′ at T = 0, it is ρ for a
pure metal and (l/ξ0)ρ for a dirty one.

Meissner Effect: Penetration Depth

If the self-consistently calculated penetration depth λ turns out to be much larger than
the quantity (1/l + 1/ξ0)−1 (∼ min(l, ξ0)) then we can write

Jµ(r) =
∫
Kµν(r, r′; 0)Aν(r′) dr′ ≈

{∫
Kµν(r, r′; 0) dr′

}
Aν(r) ≡ −ρs

ρ

ne2

m
δµνAν(r)

(34)
and we are back to the London case (though in general with a different superfluid function
ρs/ρ than 1, even at T = 0). Then the true T = 0 penetration depth λ(0) is given by

=
[
ρ

ρs

mε0
ne2

]1/2

≡
[
ρ

ρs

]1/2

λL(0), λL(0) ≡
√
mε0
ne2

(35)
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which is the London value λL(0) for the clean case and λL(0) × (ξ0/l)1/2 for the dirty
case. More generally, alloying increases the penetration depth; in fact, almost all super-
conducting alloys are type-II.

If ξeff ≡ (1/l + 1/ξ0)−1 & λ, we have to do a self-consistent calculation. In the
extreme anomalous limit ξeff � λ we can get an order of magnitude estimate by arguing
that the integral of K over R is effectively cut off at a length ∼ λ. Thus the factor l/ξ0
is replaced by λ/ξ0. Hence (since λ−2 is proportional to this integral)

λ−2(0) ∼ λ−2
L (0)[λ(0)/ξ0] ⇒ λ(0) ∼ [λ2

L(0)ξ0]1/3 (36)

Thus in the Pippard limit, min (ξ0, l) � λL, we find that λ is increased by a factor(
ξ0/λL

)1/3, irrespective of whether the sample is clean or dirty.

Finite-temperature generalization (state only)

(1) The pair radius is only weakly temperature-dependent, and remains ∼ ξ0 for a
clean superconductor and (∼ ξ0l)1/2 for a dirty one.

(2) The superfluid density is proportional to (1− T/Tc) for T → Tc with the constant
of proportionality ∼ ρs(0), i.e. ρ for the clean limit and ∼ (l/ξ0)ρ for the dirty one.

(3) The range ξeff of the EM kernel (current-vector potential relation) K(r, r′; 0) re-
mains (like the pair radius) of the same order as at T = 0, i.e. ∼ ξ0 for the clean
limit and ∼ l for the dirty one.

Since λL(T ) ∝ ρs(T )−1/2, results (2) and (3) together imply that in the limit T → Tc

we always have ξ0(T ) � λL(T ), i.e. we are always in the London limit.


