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Quantitative Development of BCS Theory
Ref: AJL, Quantum Liquids, ch. 5, sections 4 and 5.

Recap: ‘fully condensed’ BCS state described by N -nonconserving wave function:

Ψ =
∏
k

Φk, Φk ≡ uk|00〉k + vk|11〉k (1)

|uk|2 + |vk|2 = 1.

We need to determine the values of uk in the GS, i.e. the state which minimizes the
total energy with the −µN̂ subtraction, i.e.

Ĥ = T̂ − µN̂ + V̂ (2)

In the following, we ignore the Fock term in 〈V 〉 until further notice (we already saw
the Hartree term just contributes a constant, 1

2V0〈N〉2). Then 〈V 〉 is just the pairing
terms, see Lecture 5:

〈V 〉 =
∑
kk′

Vkk′FkF ∗
k′ , Fk ≡ ukvk. (3)

Vkk′ ≡ matrix element for (k ↓,−k ↑)→ (k′ ↑,−k′ ↓).
Now consider the term

T̂ − µN̂ =
∑
kσ

nkσ(ξk − µ) ≡
∑
kσ

nkσεk (4)

It is clear that |00〉k is an eigenstate of nkσ with eigenvalue 0, and |11〉k with eigenvalue 1.
Hence, taking into account the

∑
σ,

〈T̂ − µN̂〉 = 2
∑
k

εk|vk|2

(note: has finite negative energy in normal gas!)

and so:
〈H〉 = 2

∑
k

εk|vk|2 +
∑
kk′

Vkk′(ukvk)(uk′v
∗
k′) (5)

and this must be minimized subject to constraint |uk|2 + |vk|2 = 1
One pretty way of visualizing problem: Anderson pseudospin representation: Put

uk(= real) = cos θk/2, vk = sin(θk/2) · exp iφk (6)

Then, apart from a constant,

〈H〉 =
∑
k

(−εk cos θk) +
1
4

∑
kk′

Vkk′ sin θk sin θk′ · cos(φk − φk′) (7)
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Anderson pseudospin representation of BCS Hamiltonian: use Pauli vectors σk such
that (‘classically’) |σk| = 1 and take θk, φk to be polar angles, then (up to a constant∑

k εk)

〈H〉 = −
∑
k

εkσzk +
1
4

∑
kk′

Vkk′σk⊥ · σk′⊥ = −
∑
k

σk · Hk (8)

(σk⊥ ≡ component of σk in xy= plane)

where pseudo-magnetic field Hk given by

Hk ≡ −εkẑ −∆k (9)

∆k ≡ −
1
2

∑
k′

Vkk′σk′⊥ (10)

(– sign introduced for convenience)

Rather than representing ∆k and σk⊥ as vectors, it is actually very convenient to rep-
resent them as complex numbers ∆k ≡ ∆kx + i∆ky, σk⊥ ≡ σkz + iσky. Evidently the
magnitude of the field Hk is

|Hk| ≡ (ε2k + |∆k|2)1/2 ≡ Ek (11)

and in the ground state the spin k lies along the field Hk, giving an energy −Ek. If spin
is reversed, this costs 2Ek (not Ek!). This reversal corresponds to

θk → π − θk, φk → φk + π (12)

and up to an irrelevant overall phase factor this corresponds to

u′k = sin
θk

2
exp−iφk ≡ v∗k (13)

v′k = − cos
θk

2
≡ −uk

i.e., the excited state so generated is

Φexc
k = v∗k|00〉 − uk|11〉 (14)

which may be verified to be orthogonal to the GS Φk = uk|00〉+ vk|11〉. (remember, we
take uk real)

Since in the GS each spin k must point along the corresponding field, this gives a set
of self-consistent conditions for the ∆k: since σk′⊥ = −∆k′/Ek′ , we have from (10)

∆k = −
∑
k′

Vkk′∆k′/2Ek′ (15)

or in terms of the complex quantity ∆k ≡ ∆kx + i∆ky,

∆k = −
∑
k′

Vkk′∆k′/2Ek′ ← BCS gap equation (16)
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Note derivation is quite general, in particular never assumes s-state (though does
assume spin singlet pairing).

Alternative derivation of BCS gap equation: Simply parametrize uk and vk by ∆k

and Ek ≡ (ε2k + |∆k|2)1/2, as follows:

vk ≡
∆k

(|∆k|2 + (Ek + εk)2)1/2
uk ≡

Ek + εk
(|∆k|2 + (Ek + εk)2)1/2

(17)

This clearly satisfies the normalization condition: |uk|2 + |vk|2 = 1, and gives

|uk|2 =
1
2

[
1 +

εk
Ek

]
, |vk|2 =

1
2

[
1− εk

Ek

]
, ukvk =

∆k

2Ek
(18)

The BCS GS energy can therefore be written in the form

〈H〉 =
∑
k

εk(1− εk/Ek) +
∑
kk′

∆k

2Ek

∆∗
k′

2Ek′
(19)

The various ∆k are independent variational parameters: varying them and using ∂Ek/∂∆k =
∆∗

k/Ek, we find an equation which can be written

ε2k
E3

k

[
∆∗

k −
∑
k′

Vkk′
∆∗

k′

2Ek′

]
= 0 (20)

Cancelling the prefactor and taking the complex conjugate gives back the standard gap
equation.

[Assume s-state until further notice, i.e., ∆k = function of only |k|.]

Behavior of 〈nk〉 and Fk in groundstate

Let’s anticipate the result that in most cases of interest, ∆k will turn out to be ∼ const ≡
∆ over a range � ∆ itself near the F.S. Then we have 〈nk〉 = |vk|2 = 1

2(1 − εk√
ε2k+|∆|2

)

and Fk = ukvk = ∆
2Ek

. Thus, behavior of 〈nk〉 qualitatively similar to normal-state
behavior at finite T (but falls off very slowly, ∼ ε−2 rather than exponentially). Fk falls
off as |ε|−1 for large ε. [F (r) in coordinate space: see below, lecture 7.]
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BCS theory at finite T

Obvious generalization of N -nonconserving GSWF: many body density matrix ρ̂ is prod-
uct over density matrices referring to occupation space of states k ↑, −k ↓:

ρ̂ =
∏
k

ρ̂k (21)

The space k is 4-dimensional, and can be spanned by states of the forms

ΦGP ≡ uk|00〉+ vk|11〉, “ground pair” (22)
ΦEP ≡ v∗k|00〉 − uk|11〉, “excited pair”

Φ(1)
BP ≡ |10〉, Φ(2)

BP ≡ |01〉, “broken pair”

As regards the first two, they can again be parametrized by the Anderson variables
θk, φk: the difference, now, is that there is a finite probability that a given “spin” k
will be reversed, i.e., the pair is in state ΦEP rather than ΦGP. There is also finite
probability that the pair in question will be a broken-pair state, in which case it clearly
will not contribute to 〈V 〉 and thus not to the effective field. Thus, we can go through
the argument as above and derive the result.

∆k = −1
2

∑
k′

Vkk′〈σ⊥k′〉 (23)

but the 〈σ⊥k′〉 is now given by the expression

〈σ⊥k′〉 = −(P (k′)
GP − P

(k′)
EP )∆k′/Ek′ (24)

and thus the gap equation becomes

∆k = −
∑
k′

Vkk′(P
(k′)
GP )− P

(k′)
EP )∆k′/2Ek′ (25)

We therefore need to calculate the quantities P
(k)
GP , P

(k)
EP . (Since the states |10〉 and

|01〉 are fairly obviously degenerate, we clearly must have P
(k)
GP + P

(k)
EP + 2P

(k)
BP = 1).

Since we are talking about different occupation states, there is no question of Fermi or
Bose statistics, and the probability of occupation of a given state is simply proportional
to exp−βEn (β ≡ 1/kBT ) where En is the energy of the state. Thus,

P
(k)
GP : P

(k)
BP : P

(k)
EP = exp−βEGP : exp−βEBP : exp−βEEP (26)

we already know that EEP−EGP = 2Ek, (but Ek = Ek(T )!). What is EBP−EGP? Here
care is needed in accounting. If all (MB) energies are taken relative to the normal-state
Fermi sea, then evidently the energy of the “broken pair” states |01〉 or |10〉 is εk (which
can be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we
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omitted the constant term
∑

k εk. Hence the energy of the GP state relative to the
normal Fermi sea is not −Ek but εk − Ek. Hence, we have

EBP − EGP = Ek (27)
EEP − EGP = 2Ek

Hence tempting to think of BP states |10〉 and |01〉 as excitations of a “quasi-particle” and
the EP state as involving excitations of a 2 “quasiparticles.” (Formalized in Bogoliubov
transformation:

α†
k↑ = uka†k↑ − vka−k↓ (28)

etc. Return to this below)
Anyway, this gives1

P
(k)
GP : P

(k)
BP : P

(k)
EP = 1 : exp−βEk : exp−2βEk (29)

and

P
(k)
GP − P

(k)
EP =

1− e−2βEk

1 + 2e−βEk + e−2βEk
= tanh(βEk/2) (30)

Therefore, the finite-T BCS gap equation is:

∆k = −
∑
k′

Vkk′
∆k′

2Ek′
tanh βEk′/2 (31)

[Note: Also possible to derive by brute-force minimization of free energy as F (∆k), see
e.g. AJL QL app. 5D] This may or may not have (one or more) nontrivial solutions,
depending on form of Vkk′ and value of T , see below.

Finite-T values of 〈nk〉 and Fk: Fk is simply reduced by factor tanhβEk/2.
〈nk〉 is given by a more complicated expression which correctly reduces to the Fermi
distribution for ∆→ 0, T finite.

Alternative approach in terms of Bogoliubov quasiparticle operators.
Consider the operators α†

kσ defined by (28)

α†
kσ ≡ uka†kσ − σv∗ka−k,−σ, and H.C. (32)

so that inverse transformation is:

a†kσ ≡ ukα†
kσ + σvkα−k,−σ (33)

It may be easily verified that the operators αkσ satisfy the same fermion anticommutation
relations as the akσ, namely,

[αkσ, α†
k′σ′ ]+ = δkk′δσσ′ (34)

1Note that in the normal state, where “GP” is simply |11〉 for εk < 0 and |00〉 for εk > 0, this gives
for εk > 0 〈nk〉 = 2(PEP + PBP) = 2/(eβεk + 1), and similarly for εk < 0, i.e. the correct single-particle
Fermi statistics.
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It is also straightforward to verify that2

αkσ|GP〉 ≡ 0, α†
k↑|GP〉 = |10〉, α†

−k↓|GP〉 = |01〉

α†
k↑α

†
−k↓|GP〉 = |EP〉 (35)

Hence the α†
k’s effectively create independent quasiparticles – EP states can be regarded

as two independent excited quasiparticles corresponding to k ↑ and −k ↓.
Since EBP−EGP = Ek and EEP−EGP = 2Ek, we can write the Hamiltonian in the

form
Ĥ = const +

∑
kσ

Ekα†
kσαkσ (36)

At finite T the QP’s will satisfy the standard Fermi distribution (but with µ = 0,
since they can be created and destroyed):

nQP(k) = (exp βEk + 1)−1 (37)

We see that the quantity F ∗
−k = F ∗

k ≡ 〈a
†
k↑a

†
−k↓〉 is given by

〈a†k↑a
†
−k↓〉 = ukv∗k〈α

†
k↑αk↑ − αk↓α

†
−k↓〉+ terms with no e.v. (38)

= ukv∗k(nk↑ − (1− n−k↓)) = ukv∗k(1− 2nk)
= ukv∗k tanh βEk/2, as previously.

[cf. p. 5.6, foot, for sign + c.c.!]
Note: a Bogoliubov quasiparticle doesn’t carry unit particle number, because of the

fact that (
∑

σ〈a
†
kσakσ〉 = εk/Ek), but does carry unit spin (

∑
σ〈σa†kσakσ〉 = 1).

Properties of BCS gap equation

(1) Independently of form of Vkk′ , equation always has trivial solution ∆k = 0 (N
state)

(2) If all Vkk′ positive, no solutions.

(3) for T →∞, no solution.

[reduces to −
∑

k′ Vkk′∆′
k = kBT∆k, and −Vkk′ must have maximum eigenvalue.]

Hence, if ∃ nontrivial solution at T = 0, must ∃ critical temperature Tc at which
this solution vanishes.

(4) Reduction to BCS form (Vkk′
∼= −V0 = const with cutoff).

Possible if and only if typical energy range over which Vkk′ changes appreciably is
� ∆(0), which as we can verify, is ≥ T for T ≤ Tc [self-consistent solution using

2Here it is essential to remember that |11〉 is defined as a†k↑a
†
−k↓|00〉, not a†−k↓a

†
k↑|00〉 [sign change].
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BCS form]. If so, define εc � ∆, T so that for εk within εc Vkk′
∼= independent of

εk, and write BCS equation in symbolic matrix form

∆ = −V̂ Q̂∆ ≡ −V̂ (P̂1 + P̂2)Q̂∆ (39)

where
Q̂ ≡ δkk′ · (tanh βEk′/2)/2Ek′ (40)

P1 projects out states |εk| > εc, and P2 states < εc, (so P̂1 + P̂2 = 1̂). (39) can be
rearranged to give

∆ = − V̂ P̂2Q̂∆
(1 + P̂1Q̂V̂ )

≡ −t̂P̂2Q̂∆, t̂ =
V̂

1 + P̂1Q̂V̂
(41)

i.e. t̂ sums over multiple scatterings outside “shell”. Crucial point: since all states
outside shell by hypothesis have |εk| � ∆, T the factor Q occurring in t̂ is es-
sentially δkk′/2|εk′ | and hence t̂ depends neither on ∆ nor on T , but is just some
fixed operator which is a sort of “effective potential within shell.” Moreover, by
hypothesis, tkk′ is practically constant, ∼ t0, within shell. Hence gap equation
becomes (putting t0 ≡ −V0)

∆k = −V0

∑
k′,|Ek′ |<εc

∆k′
tanh βEk′/2

2Ek′
(42)

This is exactly the equation originally obtained by BCS, who assumed Vkk′ =
const = V0 within shell |εk|, |εk′ | < εc, otherwise zero. Note one can show that
solution of equation doesn’t depend on arbitrary cutoff energy εc (V0 scales so as
to cancel this).

(5) Solution of BCS model:

Rewrite using
∑

k → N(0)
∫

dε N(0) ≡ 1
2(dn

dε )

λ−1 =
∫ εc

0

tanh βE/2
E

dε, λ ≡= −N(0)V0 ≡ −
1
2

(
dn

dε

)
V (0) (43)

[Factor of 2 cancelled by
∫ εc

−εc
dε→ 2

∫ εc

0 dε]

Obvious that no solution exists for V0 > 0. For V0 < 0:

Critical temperature: put β = βc, ∆→ 0, hence E → |ε|:

λ−1 =
∫ εc

0

tanh(βcε/2)
ε

dε = ln(1.14βcεc) (44)

⇒ kBTc = 1.14εc exp−λ−1 ≡ 1.14εc exp−1/N(0)|V0|

This expression is insensitive to arbitrary cutoff energy εc since |V0| ∼ const+ln εc,
i.e. cancels dependence. So, plausible to take value εc ∼ ωD, (as in original BCS
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paper): since ωc ∼M−1/2, predicts Tc ∼M−1/2 and helps to explain isotope effect.
Also, assures self-consistency since experimentally, Tc � ωc. (ωc ≡ εc/~)

Zero-T solution:

λ−1 =
∫ εc

0

dε√
ε2 + |∆(0)|2

= sinh−1(εc/∆(0)) ∼= ln(2εc/∆(0)) (45)

⇒ ∆(0) = 2εc exp−1/λ = 1.75Tc (1.75 = 2/1.14)

Since ∆(0) measured in tunneling experiments (Lecture 7), can compare with
experiment. Usually works quite well, but for “strong-coupling” superconductors
where Tc/ωc not very small, ∆(0)/kBTc usually somewhat > 1.75.

At finite temperature, T < Tc, gap equation can be written∫ εc

0
{tanh βE(T )/E(T )− tanh βcε/ε} dε = 0 (46)

and
∫

extended to ∞ (since it converges) ⇒ ∆(T ) is of form

∆(T )/∆(0) = f(T/Tc) (47)

(Or equivalently ∆(T ) = kBTcf̃(T/Tc)). Roughly,

∆(T )/∆(0) = (1− (T/Tc)4)1/2, (48)

Near Tc exact results obtainable, cf. below:

∆(T )
∆(0)

∼ 1.74(1− T/Tc)1/2 or ∆(T )/kBTc ∼ 3.06(1− T/Tc)1/2 (49)

(6) Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,

〈H − µN〉Fock = −1
2

∑
kk′σ

Vkk′〈nkσ〉〈nk′σ〉 (50)

This is equivalent to a shift in the single particle energy:

εk → εk −
∑
k′

Vkk′〈nk′〉 (assuming 〈nkσ〉 independent of σ) (51)

and in general this depends on ∆. We have seen that crudely speaking, 〈nk〉 is
smeared out away from its N-state value in the S state over an order ∼ ∆, and
moreover the smearing is symmetric around the Fermi surface3. Thus, if Vkk′ is
approximate constant over εk � ∆, the renormalization of εk is the same in the N
and S states and has no effect on the energetics of the transition.

3Argument may fail in presence of severe particle-hole asymmetry: even if ∆ itself is constant, may
lead to

P
|k|〈nk〉 = f(n̂)
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(7) Generalizations of BCS

(a) Sommerfeld → Bloch: ⇒ ∆ may be f(n̂), but qualitatively unchanged.

(b) Landau Fermi-liquid: to the extent,
∑

|k|〈nk〉 unchanged on going from N to
S, the “polarizations” which bring the molecular field terms into play do not
occur ⇒ only effect is m → m∗: molecular-field terms do not affect the gap
equation. But they do affect the responses, just as in the normal state. (cf.
Lecture 8.)

(c) Coulomb long-range terms: have no effect on gap equation, do affect the
responses.

(d) Strong coupling: crudely speaking, effects which vanish for ∆/ωD → 0. (e.g.
approximation of constant renormalized V not exact). Need much more com-
plicated treatment (Eliashberg). Generally speaking, this treatment provides
only fairly small corrections to “naive” BCS. (e.g. ratio ∆(0)/kBTc, 1.75 in
naive BCS, can be as large as 2.4 (Hg, Pb)).


