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1. Superconducting levitation.

In a typical ‘high-school laboratory’ demonstration of su-

YBCO

h

a

perconducting levitation, a small magnet in a form of a disk of

permalloy or some related material is placed on top of a pellet

made of high temperature superconductor such as YBCO and

the pellet is then submerged into liquid nitrogen. The magnet

is seen to rise and float above the surface of the pellet. In the following, suppose the pellet

is a flat cylinder of radius a=1cm and height 5mm, and the magnet has a mass 50mg; and

that the height h at which the magnet is observed to float is 5mm.

(a) Use the above information to obtain a lower limit on the superconducting condensation

(free) energy of YBCO at the boiling temperature of liquid nitrogen (77K). If we

assume that the general behavior of the specific heat is similar to that of the classical

superconductors, what can we infer about the condensation energy at T = 0? (Tc of

YBCO is 92K).

(b) Find an order of magnitude for the frequency of small vertical oscillations of the magnet

around its equilibrium position. (Hint: Treat the ratio h/a as ‘small’ and use the fact

that in the limit for h/a → 0 the only length relevant to the magnetostatics is h.)

(c) Estimate the order of magnitude of maximum magnetic field at the surface of the

pellet, assuming the latter to be in the Meissner state. Is your estimate compatible

with what we know about the magnetism of permalloy etc.?

(d) (optional, for bonus points): Can you give an argument for why the floating magnet

is stable against transverse displacements?
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2. Nonlocal electrodynamics of normal metals.

Consider the dynamics of the conduction electrons in a metal in a situation where the

(local) electric field E(r, t) varies in both space and time. Let δn(p, r : t) be the deviation

of the semiclassical distribution function n(p, r : t) from its thermal equilibrium form f0(εp)

where f0(ε) is the Fermi function.∗ The linearized Boltzmann kinetic equation may be taken

for our purposes to be of the form

∂

∂t
δn(r,p : t) = vp ·∇δn(r,p : t)− e

[
∂f0

∂εp

]
vp · E(r, t)− δn(r,p : t)

τ
(1)

where vp ≡ p/m and τ is a phenomenological collision time.

(a) Show that the solution of this equation, up to additive transients, is of the form

δn(r,p : t) = −e
∂f0

∂εp

∫ t

−∞
dt′ v · E

(
r− vp(t− t′), t′

)
exp−(t− t′)/τ (2)

and interpret this result physically. Hence, obtain an expression for the electric current

j(r, t) in terms of E(r′, t′).

(b) Consider the case of a sinusoidal varying local field,

E(r, t) = E0(r) exp−iωt (3)

By introducing the variable r′(p, t−t′) ≡ r−vp(t−t′), show that the Fourier transform

j(r, ω) of the current can be written in the Chambers form†

j(r, ω) = e2

[
dn

dε

]
vF

4π

∫
dr′

R
(
R · E0(r

′)
)

R4
exp−iωR/vF exp−R/l (4)

where R is a shorthand for r− r′, vF is the Fermi velocity, dn/dε the density of states

(of both spins) at the Fermi surface and l ≡ vFτ the mean free path.

(c) Show that in the limit where E0(r) is slowly varying over distances of the order of

both t and vF/ω ≡ λω, the Chambers formula reduces to the ‘local’ form

j(r, ω) = σ(ω)E(r, ω) (5)

∗ Assume that kBT � εF so that the usual expansion around the Fermi energy is justified.
† You may assume without proof that the correct prescription for the transformation from the integrals

over t′ and the direction of p to that over r− r′ is given by
∫

dt′
∫

dΩp →
∫ d(r−r′)

vF|r−r′|2
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where the conductivity σ(ω) is given by the Drude expression:

σ(ω) =
1

3
e2vFl

dn

dε

1

1 + iωτ
=

ne2τ

m

1

1 + iωτ
(6)

where the last expression is valid for a free-electron gas (Sommerfeld model). Use this

result to rewrite the prefactor in the Chambers formula in terms of the dc conductivity

σ(0).

(d) By combining Chambers’ equation with Maxwell’s equations, show that the problem

of penetration of a (transverse) EM field is determined, in the limit where the free-

space wave length 2πc/ω is long compared to everything else in the problem, by

three characteristic lengths, namely the quantities l and λω and the ‘high-frequency

skin depth’ δ0 ≡ (m/ne2µ0)
1/2 (≡ λL(0) if the system becomes superconducting).

By a self-consistent dimensional argument, or otherwise, find the dependence of the

actual penetration depth δ(ω) on l, λω and δ0 in the limits (i) λω � δ0 � l and (ii)

l � λω � δ0.

3. Meissner effect and flux quantization

Consider a thin metallic ring of radius R and circular cross-

R

r

Aθ

θsection πr2. For simplicity (only) we will assume r � R and

neglect any terms of higher order than zeroth in r/R. We

apply to it an external flux Φext such that the vector potential

Aext is everywhere in the tangential direction and equal to

Φext/2πR (cf. above). The effect is to replace the tangential

component of momentum, Pθ, by (Pθ − eAθ), in both the

Hamiltonian and the expression for the electric current.

(a) ) By an appropriate transformation of variables, show that in classical equilibrium

statistical mechanics no tangential current is induced. (Bohr-van Leeuwen theorem.)

(b) In general, a current may be induced, and will then produce an ‘induced’ flux Φind

which will add to the external one Φext. Show that for r � λL(T ) Φind is negligible

compared to Φext provided the London equation is obeyed, and thus A may be taken

constant and equal to Aext.
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(c) Consider the general quantum-mechanical case: write down the time-independent

Schrödinger equation for the many-body system and state the boundary conditions

which the wave functions must satisfy. By making an appropriate gauge transforma-

tion on the wave function, show that the free energy must be periodic in Φext with a

periodicity φ̃0 = h/e, i.e. F (Φ + nφ̃0) = F (Φ).

[Note that this result, which is quite generic, is entirely compatible with (a) F (Φ) =

const. (i.e. independent of Φ) and (b) F (Φ) = periodic in some submultiple of φ̃0,

e.g. h/2e.]

(d) Consider a system of noninteracting QM particles in the above geometry and write

down the expression for the tangential current in thermal equilibrium in the presence

of Φext. Assuming that the replacement
∑

n fn →
∫

f(n) dn is valid provided |fn+1 −

fn| � fn, find the condition for the Bohr-van Leeuwen theorem to be satisfied in this

(quantum) case, assuming classical (Gibbs) statistics.‡

Now consider the case of Bose system below its transition temperature, so that a

macroscopic fraction f(T ) of all particles must occupy the lowest energy single-particle

state. Show that under these conditions the Bohr-van Leeuwen theorem is not satisfied

and sketch the form of free energy and the current as a function of Φ. Show in

particular that for Φ � φ̃0/2 the current is given by the London equation, with the

superfluid fraction ns(T )/n equal to f(T ).

Solutions to be put in 598sc homework box (2nd floor Loomis) by 9 a.m. on Mon. 15 Sept.

‡ i.e. that the probability of the occupation of a given single particle state is proportional to exp−βEn

where En is the energy of the state.
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