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1. ‘Meissner’ and ‘Pauli’ upper critical fields.

Consider a BCS superconductor with no magnetic impurities or spin-orbit coupling, at a

temperature T near Tc in an external field H.

(a) ‘Meissner’ upper critical field.

For this part of the problem, ignore the coupling of the electron spins to the field and

use the GL formalism, ignoring the fourth-order term on the grounds that it will not

affect the existence or not of a solution. Show that the condition for a nonzero order

parameter to be thermodynamically stable is

H <
Φ0

2πξ2(T )
≡ HMeissner

c2 (1)

where ξ(T ) is the GL healing length.[
Hint: Either use known results on the QHE, etc. (but watch factors of 2!) or use

the ‘radial gauge’ A(r) = 1
2
(r ×B) and the fact that the lowest eigenvalue λn of the

equation

−1

r

d

dr
r
df

dr
+

1

r2
(n− r2/2)2f = λnf

(n = 0, 1, 2, 3 . . .)

is 1 independently of n.
]

(b) ‘Pauli’ critical field.

For this part, ignore the orbital coupling treated in part (a) and consider only the

‘Zeeman’ coupling to the spins. An order-of-magnitude estimate of the largest field

which the superconducting state can tolerate in the presence of this interaction is

obtained by equating the superconducting condensation energy in zero field to the loss

of polarization energy due to formation of (singlet) pairs; to estimate the latter it is
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adequate to neglect the nonlinearity of the susceptibility. Show that in this way we

obtain for T → Tc the result

H <
kBTc

µB

[A′(1− T/Tc)]
1/2 ≡ HPauli

c2 (2)

and calculate the constant A′. Compare the latter with the ‘true’ value A = 4π2/7ζ(3)

obtained from a calculation of the instability of the normal phase, and comment briefly

on the reason for any discrepancy.[
Note: 1− Y (T ) → 2(1− T/Tc) for T → Tc where Y (T ) is the Yosida function.

]
(c) Assume now that for the purpose of order-of-magnitude estimates the formulae ob-

tained for Hc in parts (a) and (b) can be extrapolated to arbitrary values of T/Tc. Are

‘Pauli’ effects ever important in the limit T → Tc? Are they likely to be important for

any T for

(i) clean BCS superconductor

(ii) very dirty BCS superconductor

(iii) heavy-fermion systems (Tc ∼ 1K, Hc2 ∼ 1− 10T)

(iv) cuprates (Tc ∼ 100K, c-axis Hc2 ∼ 100T)

(d) Generalize the result of part (a) to the case where the coefficients γ, and hence the

healing lengths, are different for the two directions perpendicular to the field. Assum-

ing that the Pauli effect remains isotropic, estimate whether it is likely to be important

for fields on the cuprates parallel to the ab-plane (estimated Hc2 for this orientation

∼ 103T.)

2. ‘Toy model’ to illustrate some aspects of the BdG equations.

Consider the Hamiltonian

Ĥ = (λ a†1a2 − iµ a†1a
†
2) + h.c. (3)

where ai’s are fermion operators with the standard anticommutation relations, and the

parameters λ, µ are real. Evidently the relevant Hilbert space is 4D and spanned by the

vectors |n1, n2〉, n1, n2 = 0, 1. Note that Ĥ, while not conserving the quantity n̂1 + n̂2, does

conserve its parity.
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(a) By considering the quantity Ĥ2, or otherwise, find the eigenvalues of Ĥ. Is there ever

any degeneracy?

(b) Find the even-parity eigenstates of Ĥ explicitly as linear combinations of |00〉 and

|11〉, and express them in the form (α + β a†1a
†
2)|00〉. What are their relative energies?

(c) Find two linear combinations of the a’s and a†’s which annihilate the even-parity

ground state, and two which create from it (normalized) odd-parity states.

(d) Now write the Bogoliubov quasiparticle creation operator γ†
n in the form γ†

n =∑
i=1,2(uia

†
i + viai). By demanding that [Ĥ, γ†

n] = Enγ
†
n, or otherwise, derive the

‘BdG’ equations and solve for the ui’s and vi’s for each n.

(e) In the special case λ = µ, show that one of the odd-parity states is degenerate with

the even-parity groundstate. By switching to the basis |+〉 ≡ 2−1/2(|1〉 + |2〉), |−〉 ≡

2−1/2(|1〉 − |2〉), or otherwise, interpret this result physically.

(f) How are the results of part (d) relate to those of parts (a) and (c)?

3. Anomalous (‘π’) Josephson junction

Consider a tunnel-oxide junction containing magnetic impurities: for simplicity assume

them to be polarized at random in the ±z directions. Then the transmission matrix element

Tkqσ may in general depend on σ: let us write

Tkqσ = Akq + σBkq (4)

where A and B are assumed to satisfy Akq = A∗
−k−q, Bkq = B∗

−k−q and the quantity A∗B

is zero. Assume that the two bulk superconductors connected by the junction are of simple

BCS type with s-wave pairing and that T = 0.

(a) Rederive the expression for the Josephson coupling in the form

EJ = −IcΦ0

2π
cos ∆φ (5)

and show that under suitable circumstances (what are they?) the quantity Ic can be

negative. What relation, if any, can you now obtain between Ic and the normal-state

junction resistance?
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(b) Consider an ‘rf SQUID’ device in which such a junction, with a negative value of Ic,

is inserted in a bulk superconducting ring (thickness � λ): at this stage neglect self-

inductance effects (i.e., put L →∞). Show that the ground state is doubly degenerate,

with the two states related by time reversal. What is the energy barrier between them

(in zero external flux)?

(c) Now consider the effect of the finite self-inductance L of the ring (but still assume zero

external flux). Show that below a threshold value Lc, of L which depends on |Ic| the

degeneracy is removed, and find Lc. Find an expression for the height of the barrier

for L just above Lc.

(d) Consider specifically a ring with self-inductance 0.1 nH, junction critical current |Ic|=

4.4 µA and junction capacitance 25 pF. Make a rough estimate of the rate of barrier

crossing by thermal activation at (i) 100 mK, (b) 10 mK. Using the result that for

a quartic barrier and no ‘detuning’ by external noise, etc., the oscillation rate by

quantum tunneling is of order ω0 exp−(16V0/3~ω0) where ω0 is the small-oscillation

frequency, estimate this rate and the temperature below which it exceeds the rate of

crossing by thermal activation.

[Such a device is contemplated as a possible ‘qubit’]

Solutions to be put in 598SC homework box (2nd floor Loomis) by 9 a.m. on Mon. 27 Oct.
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