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Non-BCS Superconductivity: Diagnostics

The “classic” superconductors—that is, those whose behavior is well accounted for by
the BCS theory, which essentially means all those known prior to 1986 with the exception
of some “heavy-fermion” superconductors—have, or are believed to have, at least four
general properties in common:

(1) The transition temperature Tc never exceeds 25K.

(2) The normal state appears to be well described by textbook (Fermi liquid) theory.

(3) The principal mechanism of formation of Cooper pairs is a phonon-induced attrac-
tion.

(4) The symmetry of the Cooper pairs is s-wave (or more precisely, the “simplest”
representation of the appropriate crystal symmetry group).

In addition, most although not all of the classic superconductors have three other prop-
erties in common:

(5) The structure, although possibly anisotropic, is essentially 3-dimensional.

(6) The system is not particularly close to other types of ordering transition (e.g.
magnetic ones).

(7) Superconductivity is not particularly sensitive to chemical stoichiometry (in the
case of alloys).

All of the “exotic” classes of superconductors to be discussed in this part of the course
(are believed to) fail to satisfy at least one of conditions (1)–(7): The cuprates fail all
of them.

Clearly, the properties (1), (5), (6) and (7) can be read directly from experiment.
What about (3) and (4)? (We will consider (2) in a later lecture.)

Property ←− Class −→
Classic BKBO

MgB2

Heavy-

fermions

Organics Ruthenates Fullerenes Ferro-

pnictides

Cuprates

Tc < 25K (
√

) ×
√ √ √

× × ×
FL normal state

√ √
× × ×

√
×

No neighboring phase trans.
√ √

×
√ √ √

×
OP s-wave

√ √
? ? × × ×

Phonon mechanism
√ √

× ? ?
√

×
Crystal structure simple

√
×

√
× × × × ×

Stoichiometry-insensitive
√ √ √ √ √

× ×
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Diagnostics of non-phonon mechanism

A. (Absence of) isotope effect

We first recall the McMillan expression for Tc (bearing in mind that the specific form is
derived for a particular choice of the phonon DOS, namely that characteristic of Nb):

Tc =
θD

1.45
exp−

{
1.04(1 + λ)

λ− µ∗(1 + 0.63λ)

}
(1)

Here θD is the phonon Debye frequency, λ the effective electron-phonon coupling constant
defined by

λ ≡ 2
∫ ωD

0

α2(ω)F (ω)dω
ω

(2)

where F (ω) is the phonon DOS and α2(ω) is a suitably averaged electron-phonon cou-
pling constant, and finally µ∗ is the effective (renormalized) Coulomb coupling constant,
given by

µ∗ = N(0)〈Vc〉(1 +N(0)〈Vc〉 ln
(
εF/θD)

)−1 (3)

It is clear that the only way in which µ∗ depends on the isotopic mass M of the ions is
through the cutoff θD in the denominator. What is also crucially important is that the
quantity λ is independent of M ; this is most easily seen by noting that apart from an
M -independent constant λ is simply the “local” compressibility of the lattice, a static
quantity which, at least within the harmonic approximation, cannot depend on the ionic
mass.

Suppose then that we calculate the dependence of Tc on isotopic mass M . If we were
to neglect the dependence through µ∗, we would get Tc ∝ θD ∝M−1/2, or in terms of the
conventionally defined isotope shift parameter α ≡ −∂(lnTc)/∂(lnM), α = 1/2; this is
the original BCS result. If we take into account also the dependence via µ∗, we find

α =
1
2

[
1− 1.04(1 + λ(1 + 0.62λ)µ∗2

[λ− µ∗(1 + 0.62λ)]2

]
(4)

Note that even if µ∗ is small, the correction to the BCS value α = 1/2 may be appreciable
if λ is also small.

Although many of the classic superconductors do show a value of α close to 1/2,
values right down to zero and occasionally even negative do occur: note that such
negative values are not incompatible with eqn. (4). However, values of α > 1/2 are not
found.

In attempting to compare eqn. (4) with the experimental data on (possibly) exotic
superconductors, one must bear in mind that isotopic substitution could conceivably
affect Tc in other ways, e.g. by changing the lattice structure (this is particularly true
for substitution of H (1H) by D (2H)). However, crudely speaking, the occurrence of an
isotope effect with α close to 1/2 is prima facie evidence for a phonon mechanism, and
conversely the absence of an isotope effect is at least some evidence for a non-phonon
one.
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B. (Absence of) “phonon” structure in tunneling I-V characteristics

Let’s return for a moment to the Eliashberg formalism. There, one introduces a complex
“gap” (off-diagonal self-energy) which is nearly independent of momentum but has a
pronounced frequency dependence, which at T = 0 is given by the formula (cf. lecture
15 of part I):

∆(ω) =
1

Z(ω)

∫ ∞

0
dω′ Re

{
∆(ω′)(

ω′2 −∆2(ω′)
)1/2

}∫ ∞

0
dΩα2(Ω)F (Ω)×

2(ω′ + Ω)
(ω′ + Ω)2 − ω2

− µ∗

Z(ω)

∫ ωc

0
dω′ Re

{
∆(ω′)(

ω′2 −∆2(ω′)
)1/2

}
(5)

The second (Coulomb) term does not by itself give rise to any particularly sharp ω-
dependence, and can be neglected in what follows. It can be shown1 that in this gen-
eralized formalism the quantity which is measured in (Giaever) tunneling is a measure
of the quantity ∆(ω): quantitatively, for an S-I-N junction the ratio of ∂I/∂V in the
superconducting (T = 0) and normal states is given by

(∂I/∂V )s /(∂I/∂V )n = Re

{
ω√

ω2 −∆2(ω)

}
, ~ω = eV. (6)

(Note that the formula derived in lecture 8, for this ratio, namely E/(
√
E2 −∆2), is the

special case of this result for ∆(ω) = const = ∆, and ω rewritten as E).
From (5) and (6) it is clear that the I(V ) characteristic in the superconducting state

is sensitive to the structure of the phonon coupling function α2(ω)F (ω), and computer
programs have been devised by McMillan and others which allow one to work back
trom the I(V ) characteristic and infer α2(ω)F (ω). Since neutron scattering experiments
measure F (ω) directly, and the coupling constants can be calculated with fair confidence,
this means that one can check whether the values of α2(ω)F (ω) obtained in these two
quite different ways agree. Qualitatively, one would expect the phase of ∆(ω) to change
rapidly when ω is close to a value of Ω at which there is an anomously high phonon
DOS (e.g. a van Hove singularity); this then gives rise to a sharp change with ω of
the quantity Re

{
ω/

√
ω2 −∆2(ω)

}
. Consequently, the second derivative ∂2I/∂V 2 is

expected to show peaks whenever eV is close to such a value of Ω. For many of the
classic superconductors such a correspondence has been established in a very convincing
way (and I know of no case in which there is a serious discrepancy).

Thus, we can say that agreement of the spectrum α2(ω)F (ω) obtained from the
tunneling I−V characteristics with that inferred from neutron scattering or other inde-
pendent measurements on the phonons is very strong evidence for a phonon mechanism.
Conversely, if peaks measured in the neutron scattering do not show up in the I − V

1Schrieffer et al., PRL 10, 336 (1963).



PHYS598/2 A.J.Leggett Lecture 1 Non-BCS Superconductivity: Diagnostics 4

characteristic (and there is no argument, e.g. from symmetry, that the relevant electron-
phonon matrix element should vanish), that is a strong prima facie argument that the
formation of the gap has nothing to do with phonons.

Finally, we should remark that just as the electron behavior in tunneling reflects
the effects of phonons, the converse should also be true: the phonon spectrum should
show some effects of the onset of superconductivity in the electron system. These effects
should be small, of the order of the dimensionless attenuation due to phonon-electron
collisions in the normal phase, i.e. cs/vF ∼ 10−2 where cs is the phonon (sound) velocity,
however they should be outside the experimental error. In particular, one would expect
an anomalous contribution to the ultrasound attenuation when the frequency ω is close
to the gap edge ω = 2∆), c.f. lecture 8 of part I. While the existence of such anomalous
attention does not unambiguously establish a phonon mechanism for superconductivity,
its absence would tend to indicate that the coupling of phonons to electrons is very weak
and thus to cast doubt on such a mechanism.

Diagnostics of non-s-wave pairing.

In BCS theory as described in part I of the course, it is assumed that the “pseudomolec-
ular” wave function ϕ(r1r1σ1σ2) which enters the many-body wave function

Ψ(r1σ1r2σ2 . . .) = N A{(ϕ(r1r1σ1σ2)ϕ(r3r4σ3σ4) . . .} (7)

can be factorized into a spin part which is a singlet and an orbital part:

ϕ(r1r1σ1σ2) = 2−1/2 (↑1↓2 − ↓1↑2) · ϕ̃(r1r1) (8)

It then follows that the “pair wave function” F has the same structure, i.e. 〈ψ↑(r1)ψ↓(r2)〉
= −〈ψ↓(r1)ψ↑(r2)〉 ≡ F (r1r2), 〈ψα(r1)ψα(r2)〉 ≡ 0. Furthermore, F (r1r2) is assumed,
in the free-space case, to correspond to center of mass at rest (in thermal equilibrium)
so that F (r1r2) = F (r1 − r2), and finally to correspond to isotropic (s-wave) internal
structure of the pair, i.e. F (r1 − r2) = F (|r1 − r2|) with no dependence on the direction
of r1 − r2. In the presence of a crystalline lattice we have to modify the last couple of
statements slightly: although F (r1r2) is not in general now simply a function of |r1−r2|,
it is invariant under all operations of the crystal symmetry group (crystal translations
and point-group operations).2

We cannot assume that this simple state of affairs will hold for all possible systems
in which Cooper pairs form (in fact, as early as the 70’s it was established not to hold
in superfluid 3He). Let us define a generalized “pair wave function” by

Fαβ(r1, r2) ≡ 〈ψα(r1)ψβ(r2)〉. (9)

2In the simplest case, we can use a Bloch-wave basis and assume that only one band intersects the
Fermi surface. Then we can introduce the quantity Fk ≡ 〈a†k↑ a†−k↓〉, where the a†k are Bloch-wave
creation operators) and the statement is that Fk is invariant under transformations k→ k′ induced by
the point group of the crystal.
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The only generic requirement on F is that it respects the Fermi statistics, i.e. that

Fαβ(r1, r2) = −Fβα(r2, r1) (10)

but this still leaves many possibilities. It is convenient to restrict ourselves, as above,
to the case where the Fermi surface is intersected only by a single band, and to assume
that the center of mass is at rest. Then we have a more compact description in terms of
the Fourier-transformed pair wave function in the Bloch-wave basis:

Fαβ(k) ≡ 〈a†kαa
†
−kβ〉 = −Fβα(k) (11)

We can classify possible forms3 of Fαβ(k) by their parity, i.e. by whether Fαβ(k) = + or
−Fαβ(−k) [note spin indices are in the same order!], corresponding to even or odd parity
respectively. It follows at once4 from (10) (or (10)) that even-parity solutions must be
spin singlet (i.e. odd in α 
 β and odd-parity ones spin triplet (even in α 
 β). In the
singlet case Fαβ is manifestly just a product of spin and orbital functions:

Fαβ(k) = Fαβ(−k) = (iσy)αβF (k) (12)

while for the triplet case Fαβ(k) may in general be a superposition of three different
functions associated with the three Zeeman substates Sz = 1, 0,−1. In the latter case it
is convenient to characterize Fαβ(k) by a vector d(k) (in general complex) defined by

d(k) ≡ (iσyσ)αβFβα(k) (13)

In the (common) case where d(k) is a real vector, its physical significance is that there
exists for any given k a direction along which the spin state of the relevant pair is
S = 1, Sz = 0 ( 1√

2
(↑1↓2 + ↓1↑2)), and the direction of d is just this direction (while its

magnitude is a measure of the amplitude of the pair wave function, just as in the singlet
case). In this case (real d) if we choose any axis in the plane perpendicular to d, the
pairs appear to be formed in a linear superposition of Sz = 1 (↑1↑2) and Sz = −1 (↓1↓2)
states, with a relative phase that depends on the specific choice.5

Diagnostics of spin triplet (odd-parity) states.

1. Knight shift

The most obvious difference between spin, triplet and spin singlet Cooper pairs is that
the former, unlike the latter, can co-exist with a substantial spin polarization even in the

3Superpositions of even- and odd-parity states can in principle occur, but the conditions for such a
solution to be stable are extremely stringent and there is no evidence for them in any known (pure)
Cooper-paired system.

4(11) itself follows strictly only because the operators a†kαa†−kβ are evaluated at the same time. It is

in principle possible to consider a scenario in which 〈a†kα(t)a†−kβ(t′)〉 is odd in the time variable t − t′

and thus vanishes for t = t′: then the “spin-parity connection” can be broken.
5For further details on the d-vector notation, see e.g. AJL, RMP 47, 331 (1975).
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absence of “FFLO” or similar sophisticated effects: this is clear from the fact that now
the electrons with momenta k and −k have the same spin and thus a weak polarization
does not affect the pairing at all. Consequently, provided the pairs form in the states
↑↑, ↓↓ with respect to the field, i.e. with d ⊥ H, the Pauli susceptibility χ is unaffected
by the superconducting transition (to a good approximation), and consequently the spin
part of the Knight shift, and hence the total shift, should be unchanged below Tc.

If, however, for some reason d lies parallel to
ESP triplet

singlet

isotropic 
triplet

H (S = 1, Sz = 0 state), the situation is the same
as in the singlet state and we expect the relevant
part of the Knight shift to be described roughly by
the Yosida function, falling to 0 as T → 0. If d(k)
varies over the Fermi surface, then we expect the
reduction of χ to be proportional to the average of
(d · Ĥ)2, which gives the “weight” of the Sz = 0
component.

2. Absence of CC limit on upper critical field.

For a variety of reasons (not necessarily connected) almost all the “exotic” supercon-
ductors to be discussed in this part of the course are extreme type-II, and thus have
very short coherence lengths ξ0. Under these conditions the “Meissner” upper critical
field, which we recall is defined by Hc2 = φ0/2πξ2, may be very large, and the actual
field that the superconducting state can tolerate may be limited by the Pauli effects
discussed in Part I, lecture 12. We saw there that for the usual spin singlet case (in the
absence of FFLO-type solutions, etc.) Pauli effects give the Chandrasekhar-Clogston
limit, Hc(0) = ∆(0)/(

√
2µB) (or more generally gµB). By an argument exactly anal-

ogous to that on the Knight shift, this limit should also apply for a triplet state with
d ‖ H, while for a triplet state with d ⊥ H Pauli paramagnetism should not limit the
field at all and Hc2 should take the Meissner value.

3. Absence of HS (coherence) peak just below Tc?

The occurrence of an HS peak in an isotropic s-wave superconductor requires two things:

(1) a singularity (∝ (E2 −∆2)−1/2 for the s-wave case) in the single-particle DOS at
the gap edge, and

(2) the absence of a cancelling factor ∝ (E2 − ∆2) due to coherence factors in the
matrix element.

In general, as we shall see in a triplet-paired superconductor it is likely (though not
required) that there is no DOS singularity (or that it is much weaker than in the s-wave
case). However, even when there is, the question arises whether it would be cancelled
by coherence effects. The answer is no, because the terms in ∆k∆∗

k′ , now vanish when
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averaged over the direction of k: cf. below. So if the DOS retains a singularity, we still
expect an HS peak.

Diagnostics of non-s-wave orbital states6

Let’s start with the simple case that the spin configuration of the pairs is a singlet,
then the orbital configuration is characterized by a single scalar order parameter Fk ≡
〈a†k↓a

†
−k↑〉, which is in general complex and must have even parity (Fk = +F−k). Equiv-

alently, we can work in terms of the “gap parameter” ∆k, which is related to Fk by

Fk = ∆k/2Ek, Ek ≡
(
ε2k + |∆k|2

)1/2 (14)

In the following I shall assume that ∆k is not appreciably a function of the magnitude
of k, at least over a range εk ∼ kBTc. Thus, it is the variation of ∆k, with direction on
the Fermi surface that is of interest in the following. The quantity which is of primary
interest for diagnostics of the orbital pairing state is the single-particle DOS in the
superconducting state at T = 0,

Ns(E) ≡
∑
k

δ(E − Ek). (15)

It is clear that this quantity is sensitive to the variation of ∆k over the Fermi surface;
in particular, if ∆k is everywhere bounded below by some minimum value ∆min, then
Ns(E) ≡ 0 for E < ∆min. If on the contrary ∆k has one or more nodes, i.e. tends to
zero at one or more point or line on the Fermi surface, then Ns(E) will be finite for finite
E. Let us make this a little more quantitative: The total number of states Ns(< E)
with energies less than E is the number for which (ε2k + |∆(n̂)|2) ≤ E2, and hence it is
(almost) intuitively obvious that the density of states dNs(< E)/dE is proportional to
the area of that part of the Fermi surface that has |∆(n̂)| < E. Formally, we can see
this by writing

Ns(E) ≡
∑
k

δ(E − Ek) = N(0)
∫
dΩ
4π

∫
dE δ

(
E − E(ε, n̂)

)
(16)

≡ N(0)
∫
dΩ
4π

∫
dε(E′, n̂)
dE′ dE′ δ(E − E′) ≡ N(0)

∫
dΩ
4π

dε(E′, n̂)
dE′

Since ε(E, n̂) = (E2 − |∆(n̂)|2)1/2, this becomes

Ns(E) = N(0)
∫

∆(n̂)≤E

dΩ
4π

E√
E2 − |∆(n̂)|2

(17)

and thus, apart from a numerical constant that depends on the form of the node, is
indeed proportional to the area for which |∆(n̂)| < E. Thus we have, for point and line
nodes in 3D and point nodes (the only possibility) in 2D, the results

6Ref. Kuramoto & Kitaoka, Dynamics of Heavy Electrons, Sections 5.1–3.
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3D, point: Ns(E) ∝ E2

3D, line: Ns(E) ∝ E
2D, point: Ns(E) ∝ E.

So far we discussed explicitly the spin singlet case. The triplet case is a bit more
complicated, but simplifies considerably in the so-called unitary case in which the vector
d(n̂) describing the OP is real. In that case, for any particular direction of n̂ (and
its opposite −n̂) we can always choose our spin axis so that the spin state is pure
S = 1, Sz = 0

(
1√
2
(↑1, ↓2 + ↓1↑2)

)
and the pairing can thus be described by a single

complex number Fk (or ∆k), the only difference with the singlet case being that Fk

(or ∆k) must now have odd parity (Fk = −F−k). The above formulae for the density
of states, expressed in terms of the quantity |∆(n̂)| (which is of course invariant under
the choice of axes) are then unchanged. In the nonunitary case we have in general two
different gaps for a given n̂, and must then sum the two densities of states resulting from
them to get a total DOS.

It is clear that the occurrence of gap nodes on the Fermi surface will have a profound
effect on the behavior at low temperatures of those properties that involve the normal
component: crudely speaking, the density of the latter vanishes exponentially as T → 0
for a gap that is everywhere finite, but only as a power of T if there are nodes. Specifically,
if the DOS vanishes as En for E → 0, then for the asymptotic behavior of various physical
quantities simple scaling arguments predict the following7:

cv ∝ Tn+1

λ(T )− λ(0) ∝ Tn

T−1
1 ∝ T 2n+1

Ks ∝ Tn (spin singlet case).

(18)

I now turn more briefly to the way in which the symmetry of the order parameter
affects the presence or not of gap nodes and hence the low-energy DOS. In the 3D
freespace case things are relatively straightforward: for spin singlet pairing, barring
pathologies8, the form of the OP must correspond to either a single spherical harmonic
Y l

m or to a combination of Y l
m for the same l, where l = even because of the necessity

for even parity. The case l = 0 (s-wave) is the simple BCS case and has a gap that is
constant over the Fermi surface. For l ≥ 2 it is impossible to form a state that does
not have, at least, point nodes, so the low-energy DOS is power law. For spin triplet
pairing, again the only possibility is that the vector d(n̂) has components each of which
is some combination of spherical harmonics Y l

m with the same (odd) l. For l = 1 this
allows states in which the total gap magnitude |∆(n̂)| is finite for all n̂ (e.g. the “Balian-
Werthamer” state d(n̂) = const n̂); for l ≥ 3 no such state is possible and again one
must have at least point nodes. The situation is different in 2D, where nodeless states
are possible for any l (e.g. ∆(n̂) ∝ exp ilϕ).

7Ks is the Knight shift (relative to its T = 0 value).
8Mixtures of spherical harmonics with different l are in principle possible but require very stringent

conditions on the coupling constants.



PHYS598/2 A.J.Leggett Lecture 1 Non-BCS Superconductivity: Diagnostics 9

In the presence of a crystal lattice the situation is considerably more complicated9:
I will not discuss it in full generality here (but will discuss the special case relevant
to the cuprates in a later lecture). An important difference from the free-space case
is that it is not excluded that a form of the OP (or gap) that belongs to the “trivial”
representation of the crystal point group (the analog of the s-wave state) nevertheless has
nodes on the Fermi surface (a state of this type is sometimes called “extended s-wave”).
Consequently, the fact that in a given superconductor the quantities cv,∆, λ, etc. have
a powerlaw behavior at low T cannot be regarded as by itself irrefutable evidence for
an “exotic” pairing state. Rather similar considerations hold for the question of the
HS peak: Although a non-s-wave state cannot (except by pathology) have a DOS that
diverges as (E2 −∆2)−1/2, a weaker divergence for E close to the gap maximum ∆0 is
possible and in fact occurs for l 6= 0 in free space. However, in a crystalline environment
the same kind of singularity can and often does occur for s-wave-type pairing (and in
both cases may be smeared by lifetime effects etc.). Thus, the presence or absence of an
HS peak is not a particularly good test of the pairing state.

One further possible diagnostic of “exotic” pairing should be mentioned briefly
(again, it will be taken up more systematically in the context of the cuprates): Gener-
ally speaking, any pairing state that does not belong to the trivial representation of the
crystal point group is expected to be very strongly suppressed by nonmagnetic as well as
magnetic impurities, so that even a small concentration of either is enough to suppress
superconductivity entirely. By contrast, an “extended s-wave state” is expected to have
its Tc lowered by nonmagnetic impurities, but not driven to zero. We will investigate
the reason for this behavior later.

9Ref: Sigrist & Ueda, RMP 83 239 (1991).


