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Normal-state Properties: Optimal Doping: ( + overdoped
regime)

[Caution on rapid evolution of data in some areas.]

1. Elastic properties.1

Not particularly remarkable. The density of a typical cuprate (YBCO) is ∼ 6 − 7
gm/cc at atmospheric pressure. The bulk modulus (isotropic average) is typically ∼
1.5× 1012 dynes/cm2, and the thermal expansion coefficient is ∼ 10−5K−1. The degree
of anisotropy is small for LSCO but substantial for some of the bi- and tri-layer cuprates
(see Schilling, Table 2): e.g. for Bi-2212 a factor of 3 more compressible2 along c-axis.
Typically, at 10 GPa (the limit of strictly hydrostatic measurements), ∆a/a ∼ ∆b/b ∼
1.5− 2%,∆c/c ∼ 3− 6% (Thermal expansion ratios crudely similar.) A general rule of
thumb is that under compression the apical oxygens move further (closer to planes) than
would be implied by simple scaling. In some compounds (e.g. RE Ba2Cu3O7) there is
an O-T crystallographic transformation under pressure ∼ 20 GPa.

The sound velocity of the bulk material is not that easy to measure directly, because
most ultrasound experiments are conducted on powders with λ � grain size [this also
prevents USA being a particularly useful probe]. But from compressibility and/or neu-
tron scattering, infer for YBCO vl ∼ 5 km/sec, vt ∼ 2.75 km/sec (typical for solid).
This would imply a Debye temperature ∼ 300 K; value inferred from specific heat is
somewhat greater, ∼ 400 K, but anyway fairly typicalecture The Grüneisen parameter
(−∂ lnω/∂ lnV ) is ∼ 1.75 for both LSCO and YBCO (similar to e.g. SrTiO3).

In sum, apart from anisotropy, elastic properties not qualitatively different from those
of standard cubic perovskites.

2. Electronic specific heat.3

Because of the high Tc’s of the cuprates relative to θD, the experimentally observed
specific heat even for Tc tends to be dominated by the phonon contribution, which
is usually well fitted by a Debye formula with θD ranging from ∼ 200 K for Bi-2201 to
∼ 400 K for YBCO. Loram + co-workers obtain the electronic contribution by comparing
the observed specific heat with that of a reference compound, usually the “parent”
(e.g. YBa2Cu3O6), which is an AF insulator and thus is presumed to have a negligible
electronic specific heat over the range up to ∼ RT.

Textbook result: cel
v = γT, γ = (π2/3)k2

B(dn/dε), (dn/dε) = single-electron DOS at
Fermi surface.

Actual result (optimal doping): cel
v is indeed fairly rigorously linear in T from Tc up

to RT, see Loram, op. cit., Figs. 1, 6a, 7, 8. This result is also found for overdoped
Tl-2201 (Fig. 8).

1Refs.: Allen in G I, Schilling in G III.
2This is consistent with the easy cleavability of Bi-2212 along the Bi-O planes.
3Ref.: J.W. Loram et al., Physica C 235–40, 134 (1994).
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Magnitude: Loram always quotes results for γ as mJ/g atom K2, but when converted
to “per mole planar CuO2” it is almost the same for YBCO7, LSCO and Tl-2201, namely

γ ∼= 6.5 mJ/(mol (CuO2) K2) (1)

If interpreted in terms of a DOS by the textbook formula, this would give a value (N(0) ≡
DOS for one spin ≡ 1

2(dn/dε))

N(0) ∼= 1.4 eV−1 spin−1 (CuO2 unit)−1 (2)

which is a factor ∼ 4 times the value (ma2/2π~2) predicted for a free-electron model.
Thus, the specific heat data at optimal doping (+ overdoped) seem prima facie

consistent with a simple textbook (“Fermi-liquid”) model of the N state with modest
FL enhancement (at least for T . R.T.)

3. Magnetic properties (static).4

Textbook prediction: total susceptibility χ ∼ const. as f(T ), with “Wilson ratio”
((kB/µB)2/3) χ/γ ∼ 1. Knight shift Ks ∝ χ, so ∼ const.: inverse NMR relaxation
time T−1

1 ∝ cT (Korringa law) where c ∝ K2
s .

Actual results: Acc. Loram (op. cit., Fig. 5) the total susceptibility of optimally
doped YBCO is indeed independent of T for Tc < T . R.T., with a Wilson ratio close
to 1 (i.e. no FL enhancement).

However, most information on magnetic properties obtained from NMR: because
“large” samples needed, most work has been done on YBCO. The relevant isotopes are:
63Cu (natural abundance 69%, I = 3/2), 65Cu (31%, I = 3/2), 17O (0.037%, I = 5/2)
and 89Y (100%, I = 1/2). Note the I > 1/2 nuclei all have EQM’s (permitting zero-field
NQR); however, the ratio of the 65Cu/63Cu relaxation rates indicates that relaxation is
primarily magnetic rather than electric. Because the in-plane Cu’s (“Cu(2)”) and O’s
(“O(2), O(3)”) have an environment of different symmetry from the off-plane Cu’s and
O’s, the resonance lines associated with them can be unambiguously identified: below
we refer only to these (though the data on the chain Cu’s (“Cu(1)”) is also informative),
and to the (intercalant) Y’s.

The analysis of the NMR data is quite complicated and I just summarize the principal
conclusions (all for optimally doped YBCO):

(1) The Knight shift is independent of temperature for the in-plane Cu’s, and the data
on the in-plane O’s is consistent with T -independence for them also. The Y Knight
shift is nearly T -independent but shows some “turn-down” a little above Tc which
is not seen in the Cu data. The magnitude of the Cu Knight shift relative to the Y
and O ones is much larger than expected from the ratio of the known structure of
the electron-nuclear interaction, and this observation gives important information
about the structure of the N-state spin fluctuations. (I return to this subject in
lecture 13.)

4Ref.: Pennington and Slichter, in Ginsberg II.
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(2) The nuclear relaxation rate T−1
1 satisfies the Korringa relation T−1

1 ∝ T for the Y
and in-plane O. For the in-plane Cu’s the relation is not satisfied, rather the data
are relatively well fitted by a formula of the form T−1

1 ∝ aT + b. (For T∼ 200 K
the quantity b itself appears to decrease.)

Thus, prima facie, apart from the constant term in the Cu(2) T1, the data appear to
be in at least qualitative agreement with a FL picture of the N state.

Recently, the picture has been considerably complicated by the results obtained
by the Slichter group, using a more sophisticated (‘SEDOR’) technique. The results
appear to indicate that the magnetic and electric-quadrupole fields seen by different
(crystallographically equivalent) nuclei are not identical, rather there is a distribution of
both: it is significant, however, that the deviations of the two fields from the mean appear
to be connected, as if there is a single parameter controlling both. The magnitude of the
effect increases with decreasing temperature. This phenomenon is not at all understood
at present.

4. Transport properties.5

Textbook predictions: d.c. resistivity R ∼ T for T & θD, ∼ complicated for intermediate
regime, for low T ∼ a + b T 5. (Bloch-Grüneisen).

a.c. conductivity has Drude form, σ(ω) ∼ R−1(1 + iωτ)−1.
Hall coefficient: ∼const, where in high-field limit (ωcτ � 1) and in free-electron

model the constant is 1/ne. (n = no. of carriers, e = charge). Note for half-filled band
in 2D RH predicted to be zero. (Electrons + holes cancel!) Hall angle is defined as
tan−1σxy(B)/σxx and is predicted to be proportional to τ−1 and hence to T .

Thermoelectric power ∼ T .
Thermal conductivity (mostly due to phonons for not too low T ) ∼ const.

Actual results: (note need to distinguish ab-plane + c-axis coefficients! I refer to the
ab-plane values until further notice.)

The d.c. resistivity is one of the most striking features of the N phase of the cuprates.
As far as is known, all superconducting cuprates at optimal doping show an ab-plane
d.c. resistivity that is strictly proportional to T from the highest temperatures (limited
by O desorption, but ∼1000 K for LSCO) down to the lowest above the onset of super-
conductivity (10 K for some Bi-2201 samples).6 There is sometimes a small constant
term but it appears to vanish in the limit of high purity. As we go away from optimal
doping in the direction of overdoping, the T -dependence gradually crosses over from T
towards T 2 (reaching the latter behavior as Tc → 0 in Tl-2201, see Iye, Fig. 7). On
the underdoped side the deviation is in the opposite direction, see lecture 6. When the
crystal is orthorhombic (e.g. YCBO) the in-plane resistivity is anistropic (e.g. in YBCO
by a factor ∼2) (but both components are strictly linear in T ).

5Refs.: Ong in G II. Iye (and Uher) in G III, Cooper & Gray in G IV (“CG”), Hussey (J. Phys.
Cond. Mat. 20, 123201 (2008))

6cf. also data when superconductivity is suppressed by magnetic field (Bockinger et al., PRL 85, 638
(2000), (BLSCO) and earlier refs. like Thesein.
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An obvious question is whether, if different compounds are compared at optimal
doping, the (2D) resistance per CuO2 plane is universal? If this is so, then at any
given temperature the ratio of resistivities should be the ratio of the mean spacing of
CuO2 planes along the c-axis. Inspection of e.g. Fig. 5 of Iye indicates that at first sight
this does not work very well: e.g. LSCO has a much higher resistivity than YBCO, even
though the average interplane spacing is only slightly greater7 (6.5Å vs. 5.9Å). However,
if we restrict ourselves to the higher-Tc (say Tc & 80 K) compounds it appears to work
reasonably well, with an R that at R.T. is ∼ 3kΩ, i.e. about 0.12 of the “quantum unit
of resistance” h/e2.

The ac resistivity does not appear to have a simple Drude form. It is possible to fit
it to a Drude formula, σ(ω) ∼ ne2τ/m

1+iωτ but only if τ is allowed to be itself a function of
ω, with τ−1(ω) ∼ max. ω, kBT/~ (thus giving the dc result R ∼ T ). See also below on
the optical properties.

The Hall effect is also anomalous. In YBCO (pure or Zn-doped) R−1
H is closely

proportional to a+bT , but in other superconducting cuprates when it has been measured
the dependence is considerably weaker8 (and approaches a constant as we overdope). The
sign is usually positive.

The Hall angle shows a very characteristic behavior, at least in (pure or Zn-doped)
YBCO: at B = 8T,

cot θH = aT 2 + b, b = f(doping), a = independent of doping (3)

The thermoelectric power S usually has positive value at Tc and a constant negative
slope. A very intriguing observation is that as p is varied, the RT value of S crosses zero
at almost exactly the point where Tc(p) has its maximum (p ∼= 0.16). (Obertelli et al.,
Phys. Rev. B 46, 14928 (1992).)

Finally, the thermal conductivity is the one transport property that behaves rea-
sonably “normally”: it is usually either ∼ const or weakly decreasing as a function of
T .

Uniqueness: Although it is often stated that the proportionality of resistivity to T
in “textbook” metals holds only for T & θD, in fact some such metals show a linear
resistivity down to much lower temperatures: see e.g. the graph for Re, (G I, p. 221),
which appears to follow the law a + bT down to T ∼ 50K (despite a θD ∼ 400 K!).
However, in some cuprates (e.g. BiSrCuO6) the linear resistivity appears to hold right
down to below 10 K, and moreover in the cleanest samples there appears to be little or
no offset a. No obvious analogs for the behavior of the Hall effect (or Hall angle) are
known.

Unlike the ab-plane properties, the c-axis transport properties9 are very far from
universal (at least at first sight!). The dc c-axis resistivity is usually relatively well
fitted (at optimal doping) by a power law, ρc(T ) ∼ Tα, but the exponent α can range

7However, the case of YBCO is complicated because it is not clear whether, when considering the
b-axis resistivity, the chains should be counted as an “extra plane”.

8Note that Iye’s Figs. 14 and 15 plot RH while Fig. 17 plots R−1
1 .

9cf. Takagi review, in 1997 Varenna lectures.
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from ∼ +1 (e.g. YBCO, Tl-2201) through 0 (Hg-1201, LSCO) to ∼ −1 (Bi-2212). The
absolute magnitude of ρc (at T ∼ Tc, say) is always much larger than that of ρab, by
a factor that varies from ∼ 30 for optimally doped YBCO to ∼ 105 for Bi-2212. The
optical conductivity is featureless as a function of ω right up to frequencies ∼ 1eV, except
for isolated peaks that can be correlated to known phonons. (What is usually measured
directly is the reflectance, which depends on the complex dielectric constant, but barring
pathologies a constant reflectance as measured (see e.g. CG, Fig. 13) implies constant
ε1 and ε2, hence σ(ω) ∼ ω−1).

5. Spectroscopic probes.10

(a) “Surface” probes
Tunnelling11 (I − V characteristic). Experiments on LSCO, YBCO, BSCCO ...
This should measure the product of an appropriate squared matrix element times

the density of single-particle states at the energy eV.
Textbook prediction: differential conductance Gn(V ) ≡ ∂I/∂V should be flat, with

any curvature or structure on a scale ∼ εF (or some characteristic energy associated
with the structure of the junction: temperature-dependence also only on this scale).

Actual result: in all cases where measured, Gn(V) appears to have a characteristic
form that is well approximated by

Gn(V ) = a + b|V | (4)

with the constant b virtually independent of T and a decreasing weakly with decreasing
T .12 The absolute values of a and b are clearly junction-specific: the ratio b/a is typically
of the order of 50− 100mV.

Uniqueness: A similar behavior is found in some conventional NIN junctions, but
only at low voltages (∼50mV). A closer parallel is found in BKBO, where b/a appears
to be very close to constant (Sharifi et al., PRL 67, 509 (1991)).

Caution: most of the results are obtained not with macroscopic tunnel oxide junctions
but with STM, and there is evidence that the form of the I(V ) characteristic may be
sensitive to the tip-to-surface distance: at short distances the characteristic appears to
become more “normal”.

Angle-resolved photoelectron emission spectroscopy (ARPES)

Most experiments done on BSCCO, plus some on YBCO and more recently on LSCO.13

Note that BSCCO almost always cleaves between the two BiO planes, so the “nearest”
CuO plane is two layers down.

10A good general reference is the proceedings of the 1997 Conference on Spectroscopies of Novel
Superconductors (SNS97), published in J. Phys. Chem. Solids, Volecture 59, pp. 1675–2236 (1998).

11Ref.: Hasegawa et al., in Ginsberg III, pp. 583–8.
12However, above ∼200 K the curve gradually switches over to near-parabolic.
13Fujimori et al., in SNS 1997.
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In ARPES, one shines on the sample surface a beam of photons of known energy:
the photon is absorbed and kicks out an electron, and the raw data is the number of
electrons emitted with energy ε′ and direction n̂ (the magnitude of k̂′ is of course fixed
by ε′). In a näıve independent-electron model, conservation of energy implies that the
initial electron energy ε is ε′ + W − ~ωph where ωph is the photon frequency and W
the work function, while conservation of transverse momentum (i.e. parallel to surface)
implies that k′ = k where k is the initial wave vector. There is no conservation of
momentum normal to the surface, but fortunately in the case of the cuprates this does
not matter much since in view of their highly 2D structure k⊥ is not really defined (or,
if it is, the dispersion ε(k⊥) is very flat). Thus in this simple model there should be a
unique relation between the energy and transverse momentum of the ejected electron:

ε′ = ε(k
′

‖) + const. (5)

where ε(k) is the band-theoretic dispersion relation. Moreover, since the state k‖ = k
′

‖
must have been occupied, we expect the flux to fall discontinuously14 to zero for given
n̂⊥ as soon as k‖ reaches the Fermi surface.

In real life, if we hold k
′

‖ constant and vary ε′, we find the flux varies continuously
with ε′. This reflects the effect of electron-electron interactions, and a complete theory
is complicated. However, there is a strong argument that the photoelectron current
I(k

′

‖, ε
′) should be approximately proportional to the “spectral function” A(k, ε), with

k = k′ (all vectors in ab-plane) and ε = ε′+W−~ωph i.e. the probability that an electron
has in-plane momentum k and energy ε. If that is so, then by integrating I(k′, ε′) over ε′

we obtain the total occupation 〈(k)〉 of the state k. If this function shows a discontinuity
as |k| is varied for fixed direction n̂, we identify this value of |k| with the Fermi surface.
Thus we plot out the Fermi surface (actually line) as a function of direction n̂.

When this procedure is applied to the cuprates in

`hole’
Fermi sea

the N phase, the results are complicated but two things
stand out. First, in contrast to the textbook prediction
that A(k, ε) should be sharply peaked near a “quasipar-
ticle energy” ε = ε(k), with a width that tends to zero
at least as k approaches kF, the spectral function is very
smeared-out in ε, with at least 90% of the “weight” in
the background for all values of k. Secondly, if we in-
tegrate over ε to find 〈nk〉, we indeed get a sharp drop
as a function of |k| for fixed n̂, though it is again at
most ∼10% of the mean value. If we use this drop to
define a Fermi surface as above, we find that, crudely
speaking,15, we get one of the form shown, so that the
“Fermi sea” is hole-like and centered at (π, π), with a

14At zero temperature. At finite T there will be a smearing by the Fermi function.
15There is actually more structure than this, and in particular there is some evidence in the YBCO

data for (at least) two Fermi surfaces, corresponding to the expected “even” and “odd” 2-layer bands.
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total area that corresponds roughly to (1 + p) (∼=1.19 for optimal doping) holes per
CuO2 unit (note not 0.19!). It is somewhat reassuring that this is just what is predicted
by a phonomenological band-structure calculation based on a tight-binding model with
reasonable values of the hopping parameters.

(b) Volume (bulk) probes

Typically, these probes couple to the phonon degrees of freedom as well as the elec-
trons. It is often possible to distinguish peaks due to phonons by using symmetry
arguments, etc., and I shall assume these have been subtracted out of the data.16

Neutron scattering (LSCO, some YBCO17)

Neutrons couple negligibly to the electronic charge degree of freedom: the principal
coupling to the electrons is via their spin, so the neutron scattering cross-section σ(q, ω)
measures (after subtraction of phonons) the spectrum of spin fluctuations of wave vector
q and frequency ω. Neutron scattering experiments need large crystals and even then
are very time-consuming, so that the error bars are often comparable to the real data.
If for optimally doped YBCO in the normal phase we plot σ(q, ω) as a function of ω for
fixed (in-plane) wave vector q, there is no particularly significant structure (though cf.
below). If on the other hand we fix ω and plot σ(q, ω) as a function of q, then there is
a marked maximum close to the “commensurate” value (in units of π/a) (0.5, 0.5), this
is exactly the point at which in the AF phase of the present compound we get magnetic
“superlattice” scattering, see lecture 6. It is debated whether at optimal doping the
peak is a single, exactly commensurate one (i.e. exactly at (0.5, 0.5)) or whether it is
really four peaks at (0.5± δ, 0.5± δ) where δ is small (for underdoped YBCO it seems
almost certain that the latter assignment is correct). At RT the cross-section at (0.5,
0.5) has very little energy-dependence, but as T is lowered there are some indications of
a broad peak centered at 34meV.

Raman scattering18 (YBCO, BSCCO)

In Raman scattering, one shines on the system light of frequency ωi and definite po-
larization ε̂i, and detects the light scattered with frequency ωf and polarization ε̂f , in
general different from εi. If the difference in wave vector of the incident and scattered
light is q (note that q is almost invariably very small on the scale of the reciprocal
lattice, etc.) and ω the difference ωi − ωf , and if we assume that the intermediate state
(wave vector qi, energy ωi) is not too close to a resonance, then what Raman scattering
essentially measures is the fluctuations of the dielectric constant tensor, 〈εαβ : εγδ〉(q, ω)
where the indices α, β, γ, δ depend on the polarizations. Very often in the literature, it is
assumed that particular choices of α, β, γ, δ (e.g. the so-called B1g geometry) correspond
to particular mechanisms of scattering (e.g. the so-called “2-magnon” scattering), but

16However, there are a few cases when the question of assignment of a particular peak to phonon or
electron degrees of freedom is still controversial.

17Mook et al., in SNS 1997, and references cited therein.
18Refs.: Blumberg et al., in SNS 1997: Rübhausen, ibid.
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this may be dangerous. Like neutrons, Raman is sensitive to phonons as well as electrons
and those must be subtracted.

The Raman spectra of optimally doped YBCO and BSCCO appears to be almost
totally featureless for ω up to at least 2eV, and moreover at RT to be essentially identical
in the A1g and B1g channels; however, for T . 2Tc some difference appears (and the
intensity increases somewhat overall). Note that this is far from what would be prima
facie expected for the “textbook” model of a metal, where the fluctuations of ε(q, ω)
should depend on those of conserved physical quantities such as the charge and spin
density, and thus prima facie be limited to a frequency regime ∼ vFq � 2eV .

Optical reflectivity

Optical reflectance measurements19 actually probe not just the surface, but the bulk of
the metal to a depth that is typically of the order of the high-frequency skin depth; they
make minimal demands on crystal size or surface cleanness, and hence have been done
on a very wide variety of cuprates, in many cases not only in the “obvious” geometry
(surface parallel to ab-plane, so ε in plane) but also with ε ‖ ĉ.

A simple reflectance experiment at normal incidence measures the reflection coeffi-
cient R(ω), which is related to the complex dielectric constant ε(ω) (which in general is
a tensor: we assume a “simple” geometry so that only one element is relevant) by the
standard formula

R(ω) =

∣∣∣∣∣
√

ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣ . (6)

Because ε(ω) is a complex quantity, it is not uniquely determined by R(ω). However,
the analyticity properties of ε enable it to be obtained, in principle, by measuring R(ω′)
for all relevant ω′ and using a Kramers-Kronig relation. This procedure is subject to
various sources of error, and a better method is ellipsometry, which measures the complex
reflection amplitude r(ω) ≡ (

√
ε(ω)− 1)/(

√
ε(ω) + 1) directly; such experiments have

been done by the van der Marel group in Groningen20 and more recently the Rübhausen
group in Hamburg.

In comparing the reflectance data on different cuprates, it is essential to bear in
mind that ε(ω) is a “3D” quantity; thus, even if at (say) optimal doping the behavior of
the individual CuO2 planes is identical in different materials, the fact that the density
of planes differs from material to material means that ε(ω) will for that reason alone
be different, and this will be reflected in R(ω) in a complicated way. A further real-
life complication that is easy to forget is that while the (mostly insulating) “reservoir”
layers between the CuO2 planes are unlikely to contribute much to the conductivity
at frequencies: . 3 − 4eV (i.e. to the imaginary part of ε) they will contribute very

19Actually, what neutrons are directly sensitive to is the magnetic field, so in the superconducting
state they can also be used to probe the structure of vortices, etc.

20Refs.: Timusk and Tanner in G I, Tanner and Timusk in G III.
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importantly to the real part and hence to the reflectance.21 In view of these complications
it is perhaps at first sight surprising that the ab-plane optical properties of the cuprates
show any “universality” at all.

The most dramatic “universal” property comes out most clearly if we plot not the
reflectance or the real part of the conductivity, but the so-called loss function L(ω) ≡
−Im ε−1(ω). If we consider a simple textbook model of a metal and for the moment
neglect band-structure effects, then ε(ω) has the simple form

ε(ω) = 1−
ω2

p

ω(ω + i/τ)
(7)

where ωp ≡ (ne2/m∞)−1/2 is the (3D) plasmon frequency, τ is the Drude relaxation time
and ε∞ the “high-frequency” dielectric constant. Thus in the usual limit ωpτ � 1, L(ω)
would consist of a sharp peak of width ∼ 1/τ at the plasma frequency, plus a small
background. By contrast, all the superconducting cuprates (indeed, to my knowledge,
all the metallic ones even when nonsuperconducting) have a strong and broad spectrum
of L(ω), typically extending from ∼0.1 eV to a fairly sharp
upper cutoff at a value of ω which varies

L(ω)

ω
0.1 1

0.3

(log scale, eV)

from ∼1 to 2 eV depending on the cuprate.
This “midinfrared peak” is one of the most
striking generic properties of the cuprates,
and attracted attention from an early stage.
Also characteristic is the near-zero of L(ω)
which occurs at the upper edge of the MIR
peak; at higher energies L(ω) again has some
weight, but it is not so spectacular and the
detailed form tends to be material-specific as
one might expect.

Electron-energy-loss spectroscopy22 (EELS)

The simplest kind of EELS experiments, “transmission EELS” measures the fluctuations
of the charge density in the scattering system, and thus should be closely related to the
optical experiments. In fact, for an isotropic 3D system in the limit q → 0 the EELS
cross-section σ(q, ω) should be directly proportional to L(ω). In a strongly layered
system this equivalence holds only for qd � 1 where d is the interlayer spacing, so
one must employ caution in applying it to the cuprates. However, it is reassuring that
experiments in BSCCO (and, to a large extent, in YBCO) with q ‖ ab, |q| ∼ 0.05− 0.1
Å−1 (so that qd . 1) do show a spectrum that appears to be consistent with the optical
data, in particular they show a strong MIR peak. For larger values of q (up to ∼0.5
Å−1, the upper limit for practical reasons) the peak persists but is somewhat attenuated
relative to the background.

21However, it may be possible to take this effect into account semiquantitatively for members of the
same homologous series.

22Ref.: N. Nücker et al., Phys. Rev. B 39, 12379 (1989).


