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What do we know for sure about the cuprate superconduc-
tors?

1. Macroscopic EM properties

[Ref.: Tinkham (1996 edition), Ch. 9]
In this and the next lecture, I shall address the question: How much, if anything,

can we infer about the general nature of the normal and/or superconducting states of
the cuprates without recourse to a specific microscopic model?1

Probably the single most important piece of experimental information we have on
cuprate superconductivity concerns flux quantization and the Josephson effect. These
experiments were done on YBCO at an early stage, and gave the results that are standard
for classic superconductors, i.e. the unit of flux quantization is h/2e (not e.g. h/e or
h/4e) and the Josephson frequency-voltage relation is ω = 2eV/~. However, there is one
subtle point that is often overlooked: the circuits used in the experiments were without
exception such that the “paths” with respect to which the flux is quantized (etc.) lie
entirely in the ab-plane. It is theoretically conceivable (though to my mind improbable,
in view ofthe considerations below) that a direct experiment using an “all c-axis” circuit,
should it be possible, would give a different result.

The significance of these results is that, according to the argument of Part I, lecture
14, they provide very strong evidence that the superconducting state of the cuprates
possesses long-range order in the two-particle correlation function (and does not have it
in the one-particle one), which is, crudely speaking, equivalent to the statement that the
“topology” of the wave function corresponds to formation of Cooper pairs just as in the
classic superconductors. If we assume, as it almost universally is done, that this result
holds for the c-axis as well as for the ab-plane, then this knowledge is sufficient for us to
set up a Ginzburg-Landau description in terms of an order parameter which, just as in
the classic superconductors, will have the physical significance of the center-of-mass wave
function of the Cooper pairs. However, in distinction to the case of a classic (isotropic)
superconductor the parameters of the theory will evidently distinguish between ab-plane
and c-axis.

At this point, anticipating the conclusions to be obtained in the next lecture, we
might ask whether the fact that the internal state of the Cooper pairs will turn out,
almost certainly, to be “exotic”, that is to have a symmetry lower than that of the lattice,
will effect the validity of the GL description? The answer is no, at least so long as it
corresponds to a single nondegenerate irreducible representation of the crystal symmetry
group (see next lecture), but the reason is quite subtle: Although the OP does in a sense
possess an “orientation,” that orientation is not free to adjust itself arbitrarily, but is
pinned to the original crystal lattice, and therefore does not constitute a real “degree of
freedom” which needs to be explicitly taken into account. Were the orientation free to

1For the purpose of this discussion, I will generally assume, unless there is a good reason not to,
that experimental results which may have been obtained on a single cuprate are representative of the
properties of the cuprates as a whole.
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adjust, as for example in the case of the l-vector in superfluid 3He-A, it would have to
be incorporated explicitly and the description would become more complicated.

Thus, we proceed just as in the classic case but with allowance for the anisotropy:
we treat the coordinate r for the moment as a continuous variable and define, just as
there, a complex scalar order parameter Ψ(r) and write the usual terms proportional to
|Ψ(r)|2 and |Ψ(r)|4 in the free energy. The gradient term, however, must now be treated
as a tensor quantity γab with eigenvalues γ‖, γ⊥ corresponding to in-plane2 and c-axis
variation. Thus, the relevant form of the free energy density is

F{Ψ(r)} = −α(T )|Ψ(r)|2 +
1
2
β(T )|Ψ(r)|4+

+
∑
αβ

γαβ(T )
{(

∇α + 2ieAα(r)
)
Ψ∗(r)

(
∇β − 2ieAβ(r)

)
Ψ(r)

} (1)

where as usual in the limit T → Tc we assume the temperature + magnetic field depen-
dence β(T ) ∼ const ≡ β, γαβ(T ) ∼ const ≡ γαβ , α(T ) = α0(1− T/Tc) (α0 = const).

It is worth taking a moment to discuss the limits of validity of eqn. (1). Strictly
speaking, it is valid only in the limits T → Tc and infinitely slow spatial variation. A
generalization to arbitrary T can (as in the classic case) be simply achieved by replacing
the first two terms in F by a more general function Floc{|Ψ(r)|2, T}, and usually does
not change things qualitatively. The question of the spatial variation, however, is more
tricky. We recall that for a given eigenvalue γ of γαβ , the GL healing length ξ(T ) is given
by ξ(T ) ≡ (γ(T )/α(T ))1/2 = ξ0(1−T/Tc)−1/2 where ξ0 ≡ (γ0/α0)1/2. Crudely speaking,
ξ(T ) is the distance over which the order parameter has to bend appreciably either
in amplitude or in phase before the bending energy exceeds the original condensation
energy; thus, the maximum gradient of the OP that is physically realistic is of order
ξ−1(T ). The GL description will therefore be a generally valid description, at given
T , if ξ(T ) exceeds by an appreciable margin any “microscopic” lengths in the problem
(since correction terms, e.g. of the form |∇Ψ|4 may be expected to become appreciable
when the bending is over such a microscopic length). We recall for orientation that in
the standard BCS case the longest such microscopic length is the (nearly temperature-
independent) pair radius ξp, which in BCS theory is of the same order as the prefactor ξ0
in ξ(T ); thus, for t = 1−T/Tc � 1 the GL description is generally valid. In the case of a
layered system like the cuprates, this argument goes over unchanged as regards the ab-
plane behavior. However, in the case of c-axis bending it may turn out that the prefactor
ξ
(c)
0 of ξ(c)(T ) is only of the order of a few Å or even less, and thus, in particular, smaller

than the characteristic microscopic scale of the lattice structure (i.e. the (effective) c-axis
cell dimension, ∼ 6 − 15Å). In this case, eqn. (1) will still be a valid description in the
limit T → Tc, but for T appreciably away from Tc it may need to be replaced by a more
microscopic description: cf. below.

Before we do so, however, let us derive from eqn. (1) some simple consequences that
should be valid, at least, in the limit T → Tc. We first define the GL healing lengths

2We implicitly assume isotropy within the ab-plane; where this is not present (as in YBCO) the
appropriate generalization is obvious.
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ξc(T ), ξab(T ) in the obvious way ξc(T ) ≡ (γ⊥/α(T ))1/2, etc. and also the penetration
depths λc(T ), λab(T ); here it is essential to appreciate that λc(T ) means the penetra-
tion depth which screens currents flowing along the c-axis, for which the direction of
penetration actually lies in the ab-plane. Now, by deriving an expression for the electric
current from (1) in the standard way and inserting it in the Landau equation, we see
that for given Ψ(r) the eigenvalue of λ is proportional to γ−1/2, while as we have seen
the eigenvalue of ξ is proportional to γ1/2. Thus we have the important relation, for any
given T ,

ξabλab = ξcλc = f(T ) (2)

Thus, while the healing (coherence) length along the c-axis is much smaller than that in
the ab-plane, the penetration depth for currents flowing along the c-axis is much larger.
(On the actual value of f(T ), see below.)

Consider now the structure of a vortex in a cuprate superconductor. If H is parallel to
the c-axis (normal to the ab-plane), then all currents flow in the plane and the anisotropy
has no effect; the theory is identical to that for an isotropic superconductor, provided
that for ξ and λ we use the ab-plane values ξab and λab respectively. In particular, the
critical field in the z-direction (H⊥

c2) is given by

H⊥
c2(T ) = Φ0/2πξ2ab(T ) (3)

For a field lying in the ab-plane, we can obtain the form of the vortex by scaling the
coordinate axes appropriately (cf. Part I, problem 4.1(d)). Both the core and the overall
size of the vortex are strongly elongated in the
direction in the ab-plane perpendicular to the λc

λab

ξab

ξc

z

x

H

field; because of the relation (2) and the mean-
ing of λc, we see that the shape of the vortex
is not a function of temperature (provided we
stay in the region where (1) remains valid). If
we introduce, as is conventional, the anisotropy
ratio3 η ≡ ξab/ξc, then this gives the ellipticity
of the vortex. The upper critical field in the
ab-plane (H‖

c2) is given by the expression

H
‖
c2(T ) = Φ0/2πξab(T )ξc(T ) (4)

so that
H
‖
c2(T )/H⊥

c2(T ) = η (5)

and since η is often large compared to 1, the critical field in the ab-plane is generally
much larger than the (already large!) one along the c-axis. For a field making an
arbitrary angle θ with the ab-plane a straightforward calculation gives the result

Hc2(θ) =
H⊥

c2η

(cos2 θ + η2 sin2 θ)1/2
(6)

3In the literature, the conventional symbol for this ratio is γ, but I avoid this because of the possibility
of confusion with γab(T ).
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Note that if η � 1, this means that for all but the smallest values of θ the critical field
is determined by the condition Hc(θ) sin θ = H⊥

c2, i.e. the c-axis component of the field
is equal to the critical field in this direction. The physical reason for this result is that
almost all the energy of the vortices is associated with currents flowing in the ab-plane,
very little with those flowing along the c-axis.

If one looks at the detailed expressions for ξ and λ, one sees that the f(T ) which
occurs in eqn. (2) is given by4

f(T ) =
(

~
2e2

1
2
|α(T )||Ψ(T )|2

)1/2

=
(

~
2e2

1
4

∆F (T )
)1/2

(7)

where ∆F (T ) is the condensation energy of the superfluid phase relative to that of the
normal phase at the same temperature. Since this quantity can be measured directly in
specific-heat experiments, the product ξi(T )λi(T ) can in principle be found for any given
cuprate. If one could also measure H⊥

c2 and H‖
c2 accurately, one would be able to combine

this result with eqns. (3, 4) and obtain accurate values for all four quantities ξab, ξc, λab

and λc, In practice, it is difficult to implement this program because the large fluctuations
that occur in the EM behavior of the high-temperature superconductors mean that
the whole concept of an “upper critical field” is not very well defined experimentally,
see below. One might think that an alternative procedure would be to measure the
(eigenvalues of the) lower critical field H

‖
c1,H

⊥
c1 and relate them to λab(T ) and λc(T )

by the standard argument, but in practice reproducible measurements of Hc1 turn out
to be notoriously difficult in the cuprates. Probably the most reliable technique for
estimating the eigenvalues of ξ and λ in the cuprates is to combine eqn. (7) with direct
(e.g. microwave or µSR) measurements of λ. Where this is done, one finds that the
prefactor ξab of the (1 − T/Tc)−1/2 in ξab(T ) is comparable for YBCO (a-axis) and Bi-
2212, and of order 15−25Å. The c-axis values are however very different: for (optimally
doped) YBCO the experimental value5 of λc(0) is ∼ 1.1µ; since λa(0) ∼1600Å, this gives
by (2) a ξc of the order of 2− 3Å (already smaller than the inter-bilayer spacing). For
BSCO-2212 λc(0) has the enormous value 100µ, so ξc would be of the order of 0.05 Å,
making the range near Tc where the 3D GL theory is applicable very small.6

We now turn to the question of how to proceed when the 3D GL description fails
because ξc(T ) becomes . the inter-multilayer spacing. So far we have avoided the ques-
tion of “where” in the unit cell the superconductivity is located (nothing has depended
on this, since we have used a continuum description), but we must now face up to it.
So we raise the question: do we know for sure that superconductivity in the cuprates
is primarily associated with the CuO2 planes? Certainly this seems the overwhelmingly

4This relation is often written (cf. Tinkham eqn. 9.6) in terms of the (isotropic) thermodynamic
critical field Hc(T ), but the latter is not independently measurable for a type-II superconductor.

5Bonn et al., in G V. Note that what is quoted is the zero-temperature penetration depth λ(0) rather
than the prefactor λ0 of (1 − T/Tc)

−1/2 in λ(T ); the anisotropy of the two quantities is only slightly
different, see Bonn et al., Fig. 18.

6Tinkham (p. 321) quotes values of γ(≡ our η) of 7 for YBCO and 150 for Bi-2212. The former is
consistent with the above estimate but the latter smaller by a factor ∼ 3.
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natural assumption, since at first sight these planes are the only element the various
superconducting cuprates have in common. J. Dow has challenged this view, pointing
out that another element that may be common to all superconducting cuprates is the
“charge reservoir” layers.7 It is of course clear that these layers, as their name implies,
play an essential role in high-temperature superconductivity, at least as donors of holes
(or electrons); but if the claim is that they are conducting and the Cooper pairs (?) form
primarily in them rather than in the CuO2 planes, it would seem to stretch credulity
that the chemically and structurally very different charge reservoir layers found in (e.g.)
YBCO, Tl-2201, Bi-22l2 and Hg-1201 nevertheless give rise to such similar Tc’s and (at
least qualitatively) similar behavior in the superconducting state.8 This is not to deny
that there are important questions concerning these layers, not the least of which is the
extent to which they are metallic; it is entirely possible that if they are, Cooper pairing is
induced in them by a proximity-type effect from the CuO2 planes. If so, this may affect
the quantitative details of the description, of the c-axis properties, but I shall assume it
does not affect the general scheme to be described. Thus, I shall take it as a given from
now on that the principal seat of superconductivity is indeed the CuO2 planes.

Let’s start by considering a “single-plane” material such as Tl-2201. Then it is
natural to define a discrete order parameter Ψn(r‖) for the n-th CuO2 plane, where r‖ is
the in-plane (xy-) coordinate. As a function of this order parameter the GL free energy
would be expected to have the usual “bulk” terms, and the terms corresponding to
inplane bending should also be essentially identical to those for the 3D case. However,
we should expect that for “bending” along the c-axis the continuous gradient terms
would be replaced by an expression proportional to the square of the difference of the
discrete quantities Ψn(r‖) and Ψn+1(r‖). The lowest-order expression that is compatible
with gauge invariance, etc., is

F
(n)
bend(r‖) = |Ψn+1(r‖)−Ψn(r‖)|2

≡ |Ψn+1(r‖)|2 + |Ψn(r‖)|2 − 2|Ψn(r‖) ‖ Ψn+1(r)| cos ∆ϕn(r‖)
(8)

where ∆ϕn(r‖) = ϕn+1(r‖) − ϕn(r‖), ϕn being the phase of the complex quantity Ψn.
Thus, this term has the characteristic form of a Josephson coupling between neighboring
CuO2 planes.

The total free energy obtained in this way has the form

F =
∑

n

∫
dr‖Fn{Ψn(r‖)} (9)

where

Fn{Ψn(r‖)} ≡ −α(T )|Ψn(r‖)|2 +
1
2
β(T )|Ψn(r‖)|4

+γ‖(T )|(∇⊥ − 2ie A‖(r)/~)Ψn(r‖)|2 (10)

+K|Ψn+1(r‖)−Ψn(r‖)|2

7At first sight the “infinite-layer” system Ca1−xSrxCuO2 has no charge reservoir layers, but the
question is complicated by uncertainties as to whether this material is single-phase.

8cf. also the existence of the “infinite-layer” compound, which has no charge-reservoir component.
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Here we chose for simplicity a gauge in which Az(r) ≡ 0 (this is always possible). If for
any reason we wish to deviate from this condition, then to maintain gauge invariance
we should replace the last term, most generally, by an expression of the form9

K
∣∣∣Ψn+1 exp

(
i

∫ zn+1

zn

2eA · dl/~
)
−Ψn

∣∣∣2 (11)

The model described by eqn. (10) is known as the Lawrence-Doniach model ; we see
that it is equivalent to regarding the CuO2 planes as a set of Josephson junctions in series.
An important point to notice is that while it would be formally possible to incorporate
the terms in |Ψn(r‖)|2 arising from the last (K-) term in the term −α(T )|Ψ(r‖)|2, this
is not a natural thing to do; we expect physically that in equilibrium Ψn+1 = Ψn and
thus the last term as a whole is zero, so that the equilibrium value Ψ(T ) of Ψn is (in the
mean-field approximation) the same as in a 3D case with the same parameters α and β.
Thus, in any simple model of the LD type, we do not expect the interplane Josephson
coupling to raise Tc!10

It is clear that under conditions where ∆ϕn is small compared to 1, i.e. where the
bending of the order parameter over the interplane distance d is small, the LD model
reduces to a GL theory, with the correspondence

γ⊥ = Kd. (12)

We can also relate K to the critical current density Jc of the individual junctions
(which under appropriate conditions is the c-axis critical current density of the material
as a whole) by considering the case where the system is in equilibrium apart from the c-
axis phase bending (so that |Ψn(r‖)| = const. = Ψ(T )|). We then get, using the standard
form (−IcΦ0/2π) cos ∆ϕ for the Josephson coupling, the relation

K = JcΦ0/(4π|Ψ(T )|2) (13)

and so
Jc = (4π/Φ0)γ⊥|Ψ(T )|2/d (14)

Finally, noting that the c-axis penetration depth λc is given in terms of γ⊥ by the
expression

λ−2
c =

8e2

~2
µ0γ|ψ|2 (15)

we obtain a relation between λc and Jc of the form (SI units)

Jc = ~ε0c2/(2ed · λ2
c) (16)

9Tinkham’s eqn. (3) is consistent with this in the limit that Az is slowly varying over the interlayer
spacing.

10This point has been widely misunderstood in the literature, where one can find numerous attempts
to invoke this coupling to explain the increase of Tc with n in homologous series. Of course, once one
goes beyond the standard mean-field approximation, the situation becomes more complicated; cf. also
lecture 13.
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Thus, for example, for Bi-2212 where λc at low T has been measured at low temperatures
to be ∼ 100µ, we infer11 Jc ∼ 2kA/cm2. It should be emphasized that the relation (14)
between Jc and γ⊥ (and hence also eqn. (16)) applies only in the “true LD limit” where
ξc(T ) � d; in the opposite case, the d in eqn. (14) is replaced, up to a factor ∼ 1, by
ξc(T ). Thus for example, we expect the critical current to vary as (1− T/Tc) for T not
too close to Tc but to crossover eventually to a (1− T/Tc)3/2 behavior as T approaches
Tc and we get into the “3D GL” regime. It seems that for YBCO this regime is already
reached at 1−T/Tc ∼ 0.1, while for the much more anisotropic BSSCO-2212 compound
it occurs only at 1− T/Tc ∼ 10−3 and hence is barely visible: BSCCO is almost always
in the “true LD” limit.

One may ask whether, apart from its a priori plausibility, there is any direct experi-
mental evidence for the picture of the CuO2 planes as a series of Josephson junctions in
series? If this view is correct, then one would expect that under appropriate conditions
the nonlinear current-voltage characteristics would show the typical Josephson features,
and indeed this seems to be the case12 in Bi-2212. Note that in the true LD limit, in
strong distinction to the GL case, the critical current can be exceeded without heating
the sample into the normal phase.

So far, we assumed we are dealing with a single-plane material. What about multi-
plane materials such as Bi-2212? The most obvious assumption (which I have implicitly
used a couple of times above, when referring to experimental data on this compound) is
that the CuO2 planes within a single multilayer are coupled together as strongly that it
is legitimate in the present context to treat each multilayer as a single plane; then the
above analysis goes though unchanged. However, it is not in fact quite certain that the
coupling within a given multilayer is much stronger than that between different multilay-
ers, and there are even a few pieces of evidence (e.g. the fact that the λc of Hg-1223, as
inferred by Panagopoulos et al. from powder magnetization measurements,13 is a factor
of 5 larger than that of Hg-1201) which might suggest the opposite conclusion. I would
regard this question as currently open: if indeed the “unexpected” result is correct, a
quantitatively correct account of the bilayer cuprates would require the appropriate (and
obvious) generalization of the LD model (the 3D GL model is, of course, insensitive to
this complication).

A great deal of experimental work on the static magnetic properties of the cuprates
has been done and interpreted in terms of the LD theory (or its limiting form, the 3D
GL theory). A particularly interesting situation occurs when the external magnetic field
is neither parallel nor perpendicular to the ab-plane. Under these conditions one expects
to produce vortices that are on average parallel to the field. However, it is easily verified
that to produce a given current in the c-direction costs an energy γ‖/γ⊥ times that
necessary to produce the same current in the ab-plane (E ∼ J2/ρs ∼ J2/γ!), and thus
the currents much prefer to flow in the planes. The result is a set of so-called “pancake”
vortices that are staggered from one plane to the next, and the magnetization is not

11Assuming that a bilayer can be treated in this context as equivalent to a single plane, cf. below.
12Kleiner and Milller, Phys. Rev. B 49, 1327 (1994).
13However, note the caveats in lecture 7 on this technique.
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parallel to the field but oriented more along the c-axis: see Tinkham, Section 9.3.

Let’s now very briefly turn to the question of the resistivity of the cuprate supercon-
ductors in a magnetic field. This could itself easily be the subject of a whole course: here
I have space only for the barest essentials. The two basic qualitative points to appreciate
are (1) that “superconductivity” in the sense of zero resistivity cannot be maintained
in the presence of vortices, unless these are pinned, and (2) that because of the very
different orders of magnitude of the relevant parameters, in particular temperature, it
is far more difficult to pin vortices than in a classic superconductor. As a result, the
question “are cuprate superconductors in a magnetic field really superconducting?” does
not have a trivial answer. To take point (1) first, a vortex of circulation n̂

∮
vs · dl = κ

(n̂ = direction of axis) placed in a flow field such that the flow velocity at ∞ is v will
find a so-called Magnus force of magnitude

FM = ρv × κ (17)

where ρ is the density of the fluid forming the vortex. The Magnus force has nothing
to do with quantum mechanics (it was originally discovered in classical fluids); for a
neutral system it is straightforward to obtain it by considering a tube of finite width
and calculating the total kinetic energy as a function of vortex position (for a charged
system where the vortex is effectively of finite extent, ∼ λ, this argument in its simple
form does not work, but more sophisticated arguments give the same result (cf. Tinkham,
Section 5.2)). In the case of a superconductor, κ is equal to n̂ (h/2m), and if we assume
that the bulk velocity u is associated with the same “density” ρ as appears in (16)
(i.e. the superfluid density ρs) then we can rewrite (16) in terms of the electric current
density J(r):

FM = (J× n̂)Φ0 (Φ0 ≡ h/2e) (18)

Note that this relation is independent of the value of ρs and hence of T .
If the Magnus force FM is not balanced by some “pinning” force that tends to keep

the vortex close to a given impurity (etc.), then its effect will be to accelerate the vortex
transverse to the current J; eventually its effect will be balanced by some frictional force,
and the vortex will reach a terminal (steady-state) velocity u, which is the simplest case
would be expected to be proportional to v.

Now, consider the total phase difference ∆ϕ12 ≡
∫ 2
1 ∇ϕ · dl between two points in

the system separated along the direction of current flow: for definiteness we choose a
straight contour to connect them. Whenever a vortex moves across the contour, the
integral decreases by an amount 2π. But according to the Josephson relation, we expect
the voltage difference V12 between the points 1 and 2 to be proportional to the rate of
charge of ∆ϕ12:

d

dt
∆ϕ12 =

2e
~
V12 (19)

Consequently, the average voltage V 12 is

V 12 =
~
2e

d

dt
∆ϕ12 =

~
2e

2π nvus12 ≡ Φ0nvus12 (20)
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where nv is the number of vortices per unit area and s12 the distance between 1 and
2. Thus if u is linearly proportional to J as in the simplest case, the ratio of V12 to
J is proportional to s12 and to J, i.e. the system displays a simple ohmic resistive
behavior. (In the more general case, the I-V characteristic is nonlinear.). This is known
as the flux-flow mechanism of resistivity. To calculate an actual value for the resistivity
ρ, one needs a theory of the frictional force acting on a moving vortex: the simplest
(Bardeen-Stephen) theory yields a linear friction coefficient η ≈ Φ0Hc2/ρn where ρn is
the normal-state resistivity, and this then gives the remarkable result that in the limit
H → Hc2 the flux-flow resistivity approaches the normal-state value.

The above discussion rested essentially on the assumption that the vortices are free
to move. In real life, they tend to be pinned by impurities, lattice defects etc., which is
why many classic type-II superconductors have essentially zero resistivity even in
fields comparable to Hc2. As a result of the pin-

V0

V (x)

x

ning plus the Magnus force, the effective poten-
tial seen by a vortex is of the form shown; at
zero temperature the vortex will be pinned in the
metastable well, but at finite temperature there
will be the chance of thermal activation over the
barrier, with a rate proportional to the Arrhenius
factor exp−V0/kBT (note that V0 is a strongly de-
creasing function of increasing J). Now it turns
out (not obviously!) that typical (single-defect)
pinning energies in the cuprates are not very different in order of magnitude from those
in classic superconductors, while Tc is much larger; consequently, it is very difficult to
avoid depinning. The situation is further complicated by the fact that at lower temper-
atures interactions between vortices may lead to collective pinning (“glass transition”):
see Tinkham, Section 9.5.


