Miscellaneous topics in BCS theory (relevant to SC2)

1. Limits on T_c in BCS-type theories

BCS theory:

$$T_c = 1.13\hbar\omega_c \exp{-1/g} \quad g \equiv N(0)|V_{\text{eff}}| > 0 \tag{1}$$

so, prima facie, limiting value is $1.13\hbar\omega_c \gtrsim \mathrm{RT}$ if $\omega_c \sim \omega_\mathrm{D}$. (but formulae not quantitatively valid then!)

Two problems with BCS theory:

- (i) no account of repulsive Coulomb interaction
- (ii) if indeed T_c , hence Δ , is comparable to ω_D then frequency dependence of interaction ('retardation') may be important.
- (i) Inclusion of Coulomb interaction:

A prima facie problem is that the Coulomb interaction scatters into states with energies $\gg \Delta$ and even $\gg \omega_D$. This can be handled by renormalization technique of lecture 6: recall,

$$\hat{t} = \hat{V}/(1 + \hat{P}_1 \hat{Q} \hat{V}), \qquad \hat{P}_1 \hat{Q} \approx \sum_{|\epsilon| > \epsilon_c} (2\epsilon_{\mathbf{k}})^{-1}$$
 (2)

where the sum goes over states beyond a cutoff ϵ_c which it is convenient to take as (\sim) $\omega_{\rm D}$. If the matrix element $V_{\bf kk'}$ is roughly constant at some value V_c , then we have

$$V_c \sum_{\mathbf{k}} \frac{1}{2\epsilon_{\mathbf{k}}} \simeq V_c N(0) \ln(\epsilon_{\mathrm{F}}/\omega_{\mathrm{D}})$$
 (3)

and hence the effective interaction to within the shell is constant and given by

$$t = \frac{V_c}{1 + N(0)V_c \ln \epsilon_{\rm F}/\omega_{\rm D}} \tag{4}$$

In the general case the effect is to adjust the 'effective' ϵ_c . In the literature it is conventional to write $N(0)V_c \equiv \mu$, $N(0)t \equiv \mu^*$, then we have

$$\mu^* = \mu/(1 + \mu \ln \epsilon_{\rm F}/\omega_{\rm D}) \tag{5}$$

so for $\mu \to \infty$, $\mu^* \to (\ln \epsilon_{\rm F}/\omega_{\rm D})^{-1}$ (typically $\sim (\ln 10^2)^{-1} \sim 0.15 - 0.2$). So, if phonon coupling constant $N(0)|V_{\rm ph}|$ is λ (see below), then the total effective value of g is $\lambda - \mu^*$, and so we obtain

$$T_c = 1.13\hbar\omega_{\rm D}\exp{-1/(\lambda - \mu^*)} \tag{6}$$

(ii)* Inclusion of phonon 'retardation':

^{*}For a detailed account of Eliashberg theory, see article by Scalapino in Parks.

Eliashberg equations (at T = 0):

$$\Delta(\omega) = \frac{1}{Z(\omega)} \int_0^\infty d\omega' \operatorname{Re} \left\{ \frac{\Delta(\omega')}{\left(\omega'^2 - \Delta^2(\omega')\right)^{1/2}} \right\} \left[\int_0^\infty d\Omega \, \alpha^2(\Omega) F(\Omega) \times \frac{2(\omega' + \Omega)}{(\omega' + \Omega)^2 - \omega^2} - \mu^* \right]$$

$$(7a)$$

$$(1 - Z(\omega)) \, \omega = \int_0^\infty d\omega' \operatorname{Re} \left\{ \frac{\omega'}{\left(\omega'^2 - \Delta^2(\omega')\right)^{1/2}} \right\} \left[\int_0^\infty d\Omega \, \alpha^2(\Omega) F(\Omega) \times \frac{2(\omega + \Omega)}{(\omega' + \Omega)^2 - \omega^2} \right]$$

$$(7b)$$

 $(d^2(\Omega) \equiv \text{mean-square coupling constant to phonons in frequency range } [\Omega, \Omega + d\Omega], F(\Omega) = \text{phonon DOS in this range})$ Note: 1st Eliashberg equation is, apart from $Z(\omega)$ correction, simply[†]

$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}}, \quad V_{\mathbf{k}\mathbf{k}'} \equiv |g_{\mathbf{k}\mathbf{k}'}|^2 \frac{E_{\mathbf{k}'} + \omega_{\mathrm{ph}}(\mathbf{k} - \mathbf{k}')}{\left(E_{\mathbf{k}'} + \omega_{\mathrm{ph}}(\mathbf{k} - \mathbf{k}')\right)^2 - E_{\mathbf{k}}^2}$$
(8)

Note that in the limit of weak coupling $(\Delta \ll \omega_{\rm D})$ we can renormalize and introduce cutoff $\omega_c \ll \omega_{\rm D}$ on ω' : Then the term $(\omega' + \Omega)/((\omega' + \Omega)^2 - \omega^2)$ can be just approximated as Ω^{-1} , and we find it is consistent to put $Z(\omega) = 1$, $\Delta(\omega) = \text{const}$, and thus obtain a BCS theory, with the effective λ given by

$$\lambda = 2 \int_0^\infty d\Omega \, \frac{\alpha^2(\Omega) F(\Omega)}{\Omega} \tag{9}$$

McMillan and Rowell: differential conductance measures $\Delta(\omega)$ via

$$(\partial I/\partial V)_{\rm S}/(\partial I/\partial V)_{\rm N} = \text{Re}\left\{\frac{\omega}{\left(\omega^2 - \Delta^2(\omega)\right)^{1/2}}\right\}, \quad \hbar\omega \equiv eV$$
 (10)

then can reconstruct $\alpha^2(\Omega)F(\Omega)$, compare with e.g. neutron scattering data. Fits in general very good.

McMillan:

Compute T_c from (finite-T variant of) Eliashberg equations: in practice must use definite form of $\alpha^2(\Omega)F(\Omega)$, so take the one for Nb. Result well fitted by

$$T_c = \frac{\theta_{\rm D}}{1.45} \exp \left\{ -\left\{ \frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.63\lambda)} \right\}, \quad \lambda \equiv 2 \int_0^\infty d\Omega \, \frac{\alpha^2(\Omega) F(\Omega)}{\Omega}$$
(11)

One sees that even in the limit $\lambda \to \infty$ (which is probably unrealistic, because the lattice is likely to be unstable in this limit) the maximum value attainable is

$$T_c^{\text{max}} = \frac{\theta_{\text{D}}}{1.45} \exp -\left(\frac{1.04}{1 - 0.63\mu^*}\right) \lesssim \frac{\theta_{\text{D}}}{5}$$
 (12)

[†]since $\int \frac{dE}{\epsilon} = \int \frac{d\epsilon}{E}$.

However, McMillan suggested that even this is rather optimistic, since there seems empirically to be a cancellation such that for a given class of materials $\lambda \propto 1/M\omega_D^2$: thus, any attempt to increase λ is accompanied by a decrease in the prefactor ($\sim \theta_D$). By extrapolating empirical values McMillan empirically predicted a $T_c \sim 40 \text{K}$ for V₃Si (actually $T_c \sim 24 \text{K}$).

Nb. Empirically,[†] values of λ appear to be in the range 0.25–1.12 (for Pb) and those for μ^* in the range 0.1–0.2. [Allen & Dynes, Phys. Rev. B **12**, 95 (1975) suggest $T_c \sim 0.15 \, \lambda \langle \omega^2 \rangle^{1/2}$]

[Excursion: how good is experimental evidence for Eliashberg equations as such? McMillan & Rowell: 'believed to be correct to lowest order in $\hbar\omega_{\rm D}/\epsilon_{\rm F}\sim 10^{-2}-10^{-3}$, and we are able to show experimentally that errors not larger a few %': but $T_c/\omega_{\rm D}$ is only of order of few % even for Pb!]

2. Where is the energy saved?

G.V. Chester, Phys. Rev. B 103, 1693 (1956)

Consider an arbitrary metal (in zero magnetic field) at T = 0. The total energy is the sum of electron KE K_m , nuclear KE K_M and the total Coulomb energy V, which is the sum of e–e, e–n and n–n terms. Thus

$$U = \langle K_m \rangle + \langle K_M \rangle + \langle V \rangle \tag{13}$$

The second input is the virial theorem, which states that

$$\langle K_m \rangle + \langle K_M \rangle + \frac{1}{2} \langle Q \rangle = \frac{3}{2} p \Omega \quad (\Omega = \text{volume})$$
 (14)

where Q is so called virial, namely

$$Q \equiv -\sum_{ij} \mathbf{r}_{ij} \nabla_{\mathbf{r}_{ij}} V(\mathbf{r}_{ij})$$
 (15)

which sums over all particles (e and n). Because $V(\mathbf{r}_{ij}) = \pm Ze^2/|\mathbf{r}_{ij}|$, we have the simple equality Q = V. Thus, the second relation is

$$\langle K_m \rangle + \langle K_M \rangle + \frac{1}{2} \langle V \rangle = \frac{3}{2} p \Omega \quad (\Omega = \text{volume})$$
 (16)

Finally, we have Feynman-Hellmann theorem

$$-M\left(\frac{\partial U}{\partial M}\right) = \langle K_M \rangle \tag{17}$$

(we have a similar theorem for K_m , but it is not much use since the electron mass is not variable).

[†]i.e. by taking λ from independent data and fitting T_c to McMillan formula.

Now let us subtract these results for the superconducting ground state from those for the normal one,[‡] and denote $X_s - X_n \equiv \Delta X$ (so that in particular $\Delta U < 0$). We get:

$$\Delta \langle K_m \rangle + \Delta \langle K_M \rangle + \Delta \langle V \rangle = \Delta U \tag{18}$$

$$\Delta \langle K_m \rangle + \Delta \langle K_M \rangle + \frac{1}{2} \Delta \langle V \rangle = \frac{3}{2} \Delta(p \Omega)$$
 (19)

$$-M\frac{\partial \langle U \rangle}{\partial M} = \Delta \langle K_M \rangle \tag{20}$$

It is convenient to work at constant pressure: then the term $\frac{3}{2}p\Delta\Omega$ is known, experimentally, to be extremely small compared to ΔU , so we may legitimately neglect it. Also, we use the experimental fact that the shape of the curve U(T) is to a high degree of approximation independent of M, and thus $\Delta U \propto T_c^2 \propto M^{-2\alpha}$, where α is the isotopic exponent. Thus eqn.'s (18-20) reduce to

$$\Delta \langle K_m \rangle + \Delta \langle K_M \rangle + \Delta \langle V \rangle = \Delta U \tag{21}$$

$$\Delta \langle K_m \rangle + \Delta \langle K_M \rangle + \frac{1}{2} \Delta \langle V \rangle = 0$$
 (22)

$$\Delta \langle K_M \rangle = 2\alpha \Delta U \tag{23}$$

[note that eqn. (23) is independent of the assumption of negligible $\Delta\Omega$]. Thus,

$$\Delta \langle V \rangle = 2\Delta U \tag{24}$$

$$\Delta \langle K_m \rangle = -(1+2\alpha)\Delta U \tag{25}$$

$$\Delta \langle K_M \rangle = 2\alpha \Delta U \tag{26}$$

For most of the simple BCS superconductors, the experimental value of α is approximately 1/2. Thus, we find

$$\Delta \langle V \rangle = -2\Delta \langle K_m \rangle = 2\Delta \langle U \rangle \quad \text{(note } \Delta U < 0!)$$
 (27)

$$\Delta \langle K_M \rangle = \Delta U \tag{28}$$

Thus, we get the surprising result that the decrease in Coulomb energy by formation of the superconducting state is exactly balanced, in the limit $\alpha = 1/2$, by the increase in electron kinetic energy, and the condensation energy can be attributed entirely to a saving in *nuclear kinetic energy*! Note that this conclusion is completely independent of any microscopic theory, in particular of BCS theory which postdates Chester's work (by a month or so!).

3. d-vector notation§

Definition:
$$\langle \psi_{\alpha}(\mathbf{r})\psi_{\beta}(\mathbf{r}')\rangle \equiv F_{\alpha\beta}(\mathbf{r} - \mathbf{r}') \text{ or } \langle a_{\mathbf{k}\alpha}a_{-\mathbf{k}\beta}\rangle \equiv F_{\alpha\beta}(\mathbf{k})$$

 $^{^{\}ddagger}$ With the magnetic field energy which in practice is necessary to stabilize the normal state subtracted § This notation is useful for the description of Fermi superfluids with spin triplet pairing, such as superfluid 3 He. See e.g. AJL QL $\S6.2$

concise notation:

$$\mathbf{d} = (i\sigma_y \boldsymbol{\sigma})_{\alpha\beta} F_{\beta\alpha} \tag{29}$$

(if in doubt, play with Zeeman states of S = 1 molecule!)

Consider a given value of **k** and let the relevant spin-space 'wave function' be $|\Psi\rangle$. Iff **d** real, $\mathbf{S} \cdot \mathbf{d} |\Psi\rangle = 0$, i.e. S = 1, $S_z = 0$ along **d** also, along any axis $\perp \mathbf{d}$, $|\uparrow\uparrow\rangle + e^{i\phi}|\downarrow\downarrow\rangle$.

If for any single value of $\mathbf{k} \ \mathbf{d} \equiv \mathbf{d}(\mathbf{k})$ is real (though its direction may depend on the direction of \mathbf{k}) then the many-body state in question called 'unitary'. For unitary states, easier to choose axes separately for each \mathbf{k} , (e.g. along \mathbf{d}) simply described by scalar $F(\mathbf{k})$, and scalar gap $\Delta(\mathbf{k})$, with $F_{\mathbf{k}} = \Delta(\mathbf{k})/2E_{\mathbf{k}}$, $E_{\mathbf{k}} = (\epsilon_{\mathbf{k}} + |\Delta(\mathbf{k})|^2)^{1/2}$. In a single reference frame F and Δ are matrices in spin space:

$$F_{\alpha\beta} = \frac{\Delta_{\alpha\beta}}{2E_{\mathbf{k}}} \tag{30}$$

and $|\Delta|^2$ is given by

$$|\Delta(\mathbf{k})|^2 = \text{Tr}\,\Delta(\mathbf{k})\Delta^{\dagger}(\mathbf{k}) \sim |\mathbf{d}(\mathbf{k})|^2$$
 (31)

Examples of unitary states (in superfluid ³He): ABM ($\mathbf{d} = \text{const}$), BW ($\mathbf{d}(\hat{n}) \propto \hat{n}$).