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Lecture 4  Recap:  normal metals and the clectron-phonon interaction 

 

1. Normal metals:  Sommerfeld-Bloch picture 

2. Screening 

3. Fermi liquid theory 

4. Electron-phonon interaction. 

Crucial point:  (most) normal metals characterized by various frequency scales (plasma 
frequency, Fermi energy, band gap…:  Debye θD).  Tc is small compared to all of these, hence in 
discussing relevant properties of normal states can take T→0 limit.  [not necessarily true in 
exotics] 

1. Sommerfeld:  groundstate is determinant of plane wave states with ε(p) = p2/2m, filled up to 
Fermi momentum pF = ħkF, kF = (3π2n)1/3.  Thus εF typically ~ a few eV.  (and kF ~ 1Å-1).  At 

finite T, Fermi distribution with chemical potential µ (T) = εF + 0 (T2/∈F)  

⇒ cV = (π2/3) ���T (dn/dε), dn/dε = DOS of both spins at FS =3n/2εF.  � = 	�	�
�� �⁄ �.				� =���	� �⁄ ,  τ determined by (a) impurities (b) e-phonon collisions (no e-
 - e

-
 collision effect on σ 

in this model)  WF:  κ/σ T = const. (if τκ = τσ). 

Bloch:  ψn(k) = un(k) exp ik⋅ Rn  ,  ε = εn(k).  k = quasimomentum of e-.  velocity  v(k)= 
�
ℏ 	�������� 		, 

electric current = ev(k). 

Can define Fermi surface as before, but in general not spherical:  also define 

�� :		 "#"� =	 �

�$ℏ�% 		∫ '.(. 	� v'��*�⁄    

still have cv/T, χ ∝  dn/dε so unique ratio for cv /χT.  Note e- - e- processes can contribute to σ (or 
rather ρ) in Bloch theory, because total quasimomentum K not conserved by U-process.  Still 

expect that to extent τκ = τσ, WF law obeyed 

2. Screening.  [will mostly neglect band-structure effects here] 
 
 In 3D long-range part of Coulomb interaction very important:  will tend to screen out 
localized charge impurities, and also greatly affect response to applied electric field.  Simplest 
theory is RPA:  system responds like free gas but to local field which is sum of externally 
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applied one and that generated by the redistribution of the charge itself.  Quantitatively, let 
χο(qω) be “bare”† response to external field, i.e. that calculated without account of long-range 
part of Coulomb interaction.  Technically*  
 

��	�+
,-� 	≡ 	−	 01
,-�02
,-�3#+	45' 																	2
,-� = 6. 7.	of	electrostatic	potential	
	[note	defined	so	that	χstat	is	positive].		Then	basic	assumption	of	RPA	is		
 01
,-� = 	−	���+	
,-�	2O+O
,-�,			where2O+O
,-� 	≡ 	2QRO
,-� +	2T#"
,-�  

 

But ϕind(qω)  obeys Poisson’s law 

∇�2T#"	
VW� = 	−1
VW� X+⁄  

or equivalently 

,�2T#"
,-� = −1
,-� X+⁄  

putting these together: 

01
,-� = 	Y ZQ%[\
]^�
�_	 `%a\b%	[\
]^� 		 . c		dQRO
,-�   

IF then we define the “true” response χ(qω), we get 

�
,-� = 	 �+
,-�
1 +	 ��X+,� 	�+
,-�

					
§�																				 g:	in	cgs, �� +⁄ ⇒ 4k��� 

3 important consequences of basic formula (§�: 
1. Static (TF) screening:  in general χ(q0) is a complicated function, but for , ≪ �'  reduces to �+
,0� 	≅ const. = 	�� �⁄ .   Thus, if we define �'o� 	≡ 	 
��+�	
�� �⁄ , � then  

�
,p�	 ≅
, ≪ �'�												 
�� �⁄ �
1 +	�'o� ,�⁄  

                                                 
† called by PN the “screened” RF.  [beware sign conventions (and factors of e !) in this argument!] 
* thus χo(qω) is the (particle) density response function rather than that of the charge density (ρ ≡ charge density). 
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If we apply this formula to the case of a finite impurity charge at the origin,× we find the total 
potential induced by it plus the screening cloud falls off as VZ� exp−	�'oV.  Typical values of 
kFT are of the same order as kF or somewhat larger [quantitatively:  

�'o �' = 0.815	
V( t+⁄ �� �⁄ , V( 	≡⁄  interparticle distance 
3 4k�⁄ �� vw , ao = Bohr radius]. 

2. Plasmons:  if at any point χ(qω) has a pole, this indicates the possibility of a free oscillation 
in absence of external field.  Now in general, by perturbation theory 

�+
,-� = 	x2-#+	
#

z〈�z1]zp〉z�-#+� −	-� 	 
and since† ρq can excite only particle-hole pairs with  ωno ~ vF q, for ωàvFq. 

�+
,-� = 	−	-Z�x2-#+
#

z〈�z1]z0〉z� =	−	�,� �-�⁄
																																																																								
TRK	sum	rule�  

⇒in this regime, 

�
,-� = 		 �+
,-�
1 −	 ���+�-�

 

⇒pole occurs at 

-� = ��� �+⁄ 	≡ 	-~�	 													-~	typically	~5 − 10��	
so > 	 '� 
(strictly speaking, Sommerfeld-model result (jellium).  Not quantitatively valid in presence of 
finite band structure.) 

3. Nature of groundstate in RPA. 
 A general expression for the Coulomb energy in 3D is 

〈��〉 = 	12x�]	
]

〈1]1Z]〉			.					�] =	�� +,�⁄  

In the free-gas GS, <ρq ρ-q> is given (for q≠0) by the HF expression ∑ ��Z] �⁄ �1 − ��_] �⁄ ��  ∼ ℏ,v'
�� �⁄ �.  This would give a contribution to the Coulomb energy which is ∝ 	,Z� and 
thus v. large as ,	 → 0.  The system can avoid this by creating a “cancelling” density fluctuation 
of wavelength q, but this costs an energy ~	ℏ,v'.  Thus we must compromise by building in an 
appropriate no. of “virtual” plasmons into the free RPA GS.  It turns out (not obviously, at this 

                                                 
× 02QRO
,p� = 	�� +,� 		⇒ 		01
V� = 	−	�� 	�"#"� 	� 		 �Q

�$�\� 	exp = 	�'o	Vw  
† Argument valid only for TRI case. 
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level!)* that the contribution of the mode q to the GSE is á above, in fact simply 
�
�ℏ-~.  (see 

e.g. P+N QL § 5.3) 

3.  Fermi liquid theory  (first for liquid 3He, then normal metals) 

 The Coulomb interaction in real metals is very strong, and at shorter wavelengths RPA is 
almost certainly not a complete account of its effects.  Why, nevertheless, do many metals 
behave so like the Bloch-Sommerfeld (“textbook”) model? 

 Note:  Fermi liquid approach rests on ansatz about GS (excluding superconductivity for the 
moment).  Cannot be demonstrated a priori for any particular metal! 

 Landau ideas of adiabatic evolution:  definition of quasiparticles, “occupation number” 
δn(pσ). 

 Translationally and rotationally invariant system:  definition of �∗, 6ℓ, �ℓ	�≡ 6ℓ
(�, 6ℓ
���.  
Generalization to system with crystal-lattice effects.   

 Molecular fields (generalization of RPA).   

 Note molecular fields only come into play in presence of “macroscopic polarization” ⇒ no 
effect on eg specific heat, nor on transport props provided we work in terms of “conductivities” 
rather than “diffusivities”.   

 Modern theory of normal metals combining Landau, Bloch and screening (RPA) 
considerations.  In general, χo(qω) is effected by Landau molecular fields, eg. 

�+
,0�]≪]� 	~
�� �⁄ ��1 + 6+
(��Z�	, so kFT is quantitatively modified.  However, for the 

translation-invariant (“jellium”) case, ωp is not affected, since the result �+
,-� ≅		 
−	� ,� �-�⁄  turns out still to be valid. 

 [Another demonstration:  Consider the sum rules for the true χ(qω): 

                                                 
* If we write Ψ+~	�1 + 	��~_�|0� where |0� is free-gas GS and �~_ creates plasmon, then 〈�� 	〉~	
1 − ��.const. /q 
and the extra KE	 ∝ 	��.  Hence there is an optimum value of α. 
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kZ�� -Z��
+

		�
,-�	�-
���= 	�
,p� 	→ 	,�+�� 		
, → 0�	�+p
,���
kZ�� -�

+
�
,-�	�- = �,� �⁄ 						
7���

	
kZ�� -v�

+
		�
,-� = 	 〈��]	��Z]	� ¡〉 		
translation	invariant	system	only!�

= 	����,���+ + p
,��

 

Together these imply that for , → 0	�
,-� is exhausted by a single pole at 

-~ 	≡ 	 
��� �+⁄ �� �w .  ] 
4. Electron-phonon interaction 

 Simplest theory is generalization of RPA. Define the “bare” responses 

�Q£
+�
,-�, �T+#
+�
,-� 
of the electron and ion particle densities to the local field, and the “true” responses 
χel(q-),χion(q-) similarly, (I.e in calculating χ
o�'s	can	ignore	all	LR	Coulomb	forces,	whether	
el-el,	el-ion	or	ion-ion�.	Only	problem	is	to	keep	signs	straight!	Define	the	χ’s	as	particle	
density	responses	and	the	δρ’s	as	charge	densities,	then	

01Q£
,-� = −���Q£
+�
,-�2O+O
,-� 
0ρT+#
,-� = −�����T+#
+�
,-�2O+O
,-�                     [(charge on ion = Ze) 

2O+O
,-� ≡ 2QRO
,-� + 2T#"
,-� 
where 2ind(q-�	satisfies	
Poisson�	

∇�2T#" = 1
X+ 
01Q£ + 01T+#� 

Solving these: 

01Q£
,-� 02QRO ≡ −���Q£
,-�⁄  

= −���Q£
+�
1 + �2

X+,���Q£
+� + ���T+#
+��
 

and similarly for 0ρion (q-). Thus,  
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�Q£
,-� = �Q£
+�
1 + ��X+,� ��Q£


+� + ���T+#
+��
 

�T+#
+�
,-� = �T+#
+�
1 + ��X+,� ��Q£


+� + ���T+#
+��
																					
†� 

These formulas are general but rather messy. To see the essence of the results, it is convenient to 
consider limit -áqvFákFvF (thus neglecting plasmons) and moreover neglect all short-range 
interactions of ions: thus equation of motion is taken to be 

®1T+#®W = −¯ ∙ ±T+# ,			®²T+#®W = 	�T+#� ³ 

and thus from definition of �T+#
+�  ,      �T+#
+�
,-� = −�T+#,� ´-�.⁄  

If we define the “bare” ion plasma frequency by 

Ω~� ≡ ���T+#��/´X+ 

and the electron TF wave vector by 

�o'� ≡	 
��/X+���
,, 0�]á��� ≡ ·�@
��/X+�
��/�X�� 
we can write the results in the form 

�Q£ = ·
1 + �o'� /,� − Ω~�/-� 

 

�T+# = −�T+#,�/´-�
1 + �'o� /,� − Ω~�/-� 

In the limit of infinitely massive ions, (M→∞, Ωp→0) we recover the previous RPA results for 
the electrons. 

 The expressions for χel	and	χion	have	a	pole,	which	for	qákTF, ωáΩp	occurs	at	 
- = 	¹(,							¹( ≡ Ω~/�o'	 

For a jellium model the quantity Ωp/kTF		is	equal	to�»�v¼�
�/� v' so the velocity of sound  

cs ~ (m/M)1/2
VF (Bohm-Staver).  In the more general case we have -~½� 
,� = Ω~� 
1 + �o'� ,�⁄ �⁄  
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Effective electron-electron potential 

 The above results are equivalent to the replacement of 2ext	by	the	screened	potential 
2
,-� ≡ 2¾¿À	
,-�

1 + �o'� ,� − Ω~� -�⁄w  

Now let us take 2ext(q-) to be the potential of a second electron, i.e. e2/ εoq
2. This gives an 

effective e--e- interaction. 

V¾ÂÂ¾ÃZ¾Ã
,-� = �� X+,�⁄
1 + �o'� ,� − Ω~� -�⁄w  

or using above relation to eliminate Ωp	in	terms	of	ωpk
q�:1	
V¾ÂÂ¾ÃZÄ
,-� = ��

�+ ∙
1

,� + �o'� Å1 + -~½� 
,�
-� − -~½� 
,�Æ 

		
First term is e- - e- interaction self-consistently by e- gas, second is interaction via exchange of 
virtual photons. Note second contains ω	and	thus	is	screened	retarded	in	time	
illustrate	with	
“polarization”	picture�.		In	this	simple	model	Veff	is	zero	at	zero	frequency,	then	increasingly	
attractive	for	ω	<	ωph
q�.	[↑: This would predict all metals superconducting.]  ↑: likely 
quantitative inaccuracy of above for real metals with q~qF. 

 

The quantum picture. 

 The above argts. never referred to the fact that the ionic vibrations are quantized. 
However, it should be possible to interpret them in terms of the emission and absorption of 
phonons. 

 Consider a given wave vector q.  With it is associated a classical lattice vibration 
(longitudinal acoustic) with frequency. ωph
qqqq�	and	a	phonon	of	energy	Ñωph
qqqq�.	Consider	a	
process	in	which	an	electron	of	wave	vector	k	emits	
say�	a	phonon	of	wave	vector	qqqq,	going	
                                                 
* We need to use the relation  -~�
,� = ÌÍ]

���Î% _]%�Ï/%   (cf. (†) above) 
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thereby	into	a	state	of	wave	vector	kkkk'.	Because	of	the	periodicity	of	the	lattice	we	must	
satisfy	the	condition	

kkkk	–	kkkk'	=	qqqq	+	GGGG 

As usual, we call the process normal (N) if G = 0, Umklapp (v) if G Ó	0.	For	the	moment	let	us	
focus	on	N-	processes.	If	the	process	is	a	real	one,	we	must	also	involve	conservation	of	
energy,	but	for	a	process	leading	to	a	virtual	intermediate	state	energy	need	not	be	
conserved.	
	 There	will	be	some	matrix	element	gkk'	 for this process. To find it, we could either (1) 
go back to first principles, or (2) rederive the effective el – el interaction in terms of phonons and 
compare with our earlier result based in a classical treatment. (2) is more instructive and will 
now be done: 

 

q = k – k' 

 
 
 

k                k'                     k 

 

Consider the process depicted graphically above, in which an electron, initially in state k, emits a 
phonon of wave vector q, going thereby into an (empty) state k'; subsequently it re-absorbs the 
phonon and returns to its original state. The intermediate state of the system is virtual. This 
changes the energy of the state |0> of the system, which contains one electron in k: by 
straightforward 2nd-order perturbation theory. 

ΔÖ+ =x|〈0|V|×〉|
Ö+ − ÖT

�

T
 

In our case, Eo is ∊ k), Ei	is	the	energy	of	the	state	with	electron	in	kkkk'	and	the	phonon	in	qqqq,	ie	
∊(k') + Ñω
qqqq�,	and	<0|V|	×>	is	the	matrix	element	gkk' (which is what we essentially want to 
find). Hence we have, with the sum over k' going over unoccupied states only, 

ΔX� = x |Ù��Ú|�X
�� − X
�Ú� − ℏ-
Û� ≡x
1 − ��Ú�
�Ú�Ü
Ý#���
ÞÜßÞ�

|Ù��Ú|�X
�� − X
�Ú� − ℏ- 

The total change in energy of the system due to exchange of phonons is 
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ΔÖ =	x��ÞΔX�Þ
�Þ

 

=x��Þ
1 − ��ÚÞ�
��ÜÞ


Ù��Ú��X
�� − X
�′� − ℏ-
Û� 

 

If we add a term with k and k' interchanged and divide by ½, we get (a) a term which is linear in 
the nk and can be written  

x�á�
�

 

. (fk ind of nk') and (b) a term in nknk': 

ΔÖ = 	x��Þâ� − 12x����Ú|Ù��Ü|� Å 1
X
�� − X
�Ú� − ℏ-~½
Û� +

1
X
�′� − X
�� − ℏ^~½
Û��Þ�Þ

 

=	x��Þâ� − 12x����Ú
��ÜÞ

∙ 2ℏ-~½|Ù��Ü|�[X
�� − X
�Ú�G� − ℏ�-�~�
Û��Þ
 

The effective interaction  VQááQ£ZQ£
ã, ã′� which leads to the second term as a Hartree-Fock term is 

given by the second derivative -- ∂2
E/∂nk∂nk', 

i. e. ΔÖ ≡ −12xVQáá
��′�����Ú
��Ú

 

V�,�Ú¾ÂÂ = + 2ℏ-~½|Ù��Ú|�[X
�� − X
�′�G� − ℏ�-~½� 
,� ,																			Û ≡ ã − ã′ 
This result is quite general and independent of the detailed form of the matrix element gkk'. 

Let us now ask: What is the matrix element in the simple (“jellium”) model we used above? We 
compare the expression just derived with the classical result 

V¾ÂÂ
,, -� = ��
X+

1
,� + �'o� Å1 + -~½� 
,�

-� − -~½� 
,�Æ 

and put q = k-k', ω=
∊
k�-	∊	
k’�/ Ñ.  The first term above is irrelevant, since it gives the effect 
of the screened electron-electron interaction, and does not refer to phonons. If we demand 
agreement for the second, the matrix element must be given by 
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|Ù��Ú|� = 1
2

�� X+⁄
,� + �'o� ℏ-~½
,� 							
	Û ≡ ã − ã′� 

This formula should not be taken quantitatively when q is too large ~ (kF, kTF or kD). But for 
reasonably small q it should give at least the qualitatively correct behavior. The crucial point to 
notice is that for q→0, the matrix element to emit (or absorb) an acoustic phonon of wave vector 

q is proportional to q1/2. (since ωph
q�~q�.	This	result	is	actually	not	model-dependent.	Note	
that	in	view	of	the	definition	of	�'o� , the long-wavelength matrix element can be written simply 

|Ù��Ú|]→⋅� = 1
2 ∙
ℏ-~½
,�Ù
X'�  

i.e. inversely proportional to Ù
X'� (because efficiency of screening ∝ Ù
X'�) 
 

___________ 


