Physics 598SC Professor Anthony J. Leggett

Superconductivity, Ancient and Modern — Department of Physics
Phys598 — Fall 2011 University of Illinois
Lecture #6

Quantitative Development of BCS Theory
Ref: AJL, Quantum Liquids, ch. 5, sections 4 and 5.

Recap: “fully condensed” BCS state described by N-nonconserving w.f.

U = H CI)k, by = uk|00 >k —|—Uk‘11 >k (1)
k
lue|? + |uk]? = 1.

We need to determine the values of uy in the GS, i.e. the state which minimizes the total
energy with the —[I,N subtraction, i.e.

H=T—-uN+V (2)

In the following, we ignore the Fock term in < V' > until further notice (we already saw

the Hartree term just contributes a constant, %Vo < N >2.) Then < V > is just the pairing

terms, see Lecture 5:

<V >= Z ka/FkFlf/, Fy = wyvy. (3)
kk’

Vi = matrix element for (k |, -k 1) — (k' 1, -k’ |)

Now consider the term
T — ;LN = Z leg(fk — ,U) = Z Nko €k (4)
ko ko

It is clear that |00 > is an eigenstate of ny, with eigenvalue 0, and |11 >y with eigenvalue
1. Hence, taking into account the }_,

<T —uN>=2%, ex|vk|? (note: has finite negative energy in normal gas!)
and so:

< H>=2 Z Ek|Uk|2 + Z ka/(ukvk)(ukrvﬁ,) (5)
k

kk’

and this must be minimized subject to constraint |uy|* + vy |> = 1

One pretty way of visualizing problem: Anderson pseudospin representation: Put

ux (= real) = cos Oy /2, vk = sin(0y/2) - expidy (6)



Then, apart from a constant,

1

< H>=> (—eccosby) + 1

k

Z Vi sin Oy sin 0y - COS(¢k - ¢k’) (7>

Kk’
Anderson pseudospin representation of BCS Hamiltonian: use Pauli vectors oy such that

(“classically”) |ox| = 1 and take 0y, ¢ to be polar angles, then (up to a constant)

1

<H>:—26k0zk+
= 4

> Viwoxi - owi =—Y ok Hx (8)

Kk’ Kk
(01 = component of oy in xy= plane)

where pseudo-magnetic field Hy given by

Hy = —ex2 — Ax (9)
1
Ay = ~5 Z Vi 0w 1| (%) (-sign introduced for convenience)
k/

Rather than representing Ay and oy, as vectors, it is actually very convenient to represent
them as complex numbers Ay = Ay, + 1Ay, 0k = Ok + 10py.

Evidently the magnitude of the field Hy is
[Hal = (6 + [Axl?) 2 = Ex (10)

and in the ground state the spin k lies along the field Hy, giving an energy —Fy. If spin is

reversed, this costs 2Fy (not Ey!). This reversal corresponds to
ek—>7T—¢9k, ¢k—>¢k+7'l' (11)

and up to an irrelevant overall phase factor this corresponds to
!/

0
uy, = sin Ek exp —igx = vy, (12)
v, = — COS bhe _ —u
Kk 5 = Uk
i.e., the excited state so generated is

DL = v |00 > —uy |11 > (13)

which may be verified to be orthogonal to the GS &) = uy|00 > 4vy |11 >. (remember, we

take uy real)



Since in the GS each spin k must point along the corresponding field, this gives a set of

self-consistent conditions for the Ay: since oy, = —Ay//Fyx, we have from (¥*)
— " Vi Aw /2By (14)
k/

or in terms of the complex quantity Ay, = Ay, + 1Ay,
Ay = — Z Vi Ax /2 Ey < BCS gap equation. (15)
k/
Note derivation is quite general, in particular never assumes s-state (though does assume
spin singlet pairing)
Alternative derivation of BCS gap equation: Simply parametrize uy, and vy by Ay and
By = (6 + |Ax]?)Y?, as follows:

o — A e = Bic o (16)
T (AP + (B + @) T (AP + (B + @)
This clearly satisfies the normalization condition: uy|? + |vk|? = 1, and gives
1 € v A
2 k 2 k k
|uk| 2( + E]()? |Uk| 2( Ek)7 Uk Uk 2Ek ( )
The BCS energy (5) can therefore be written in the form

< H >= Zék 1_€k/Ek +Z K (18)

£ 2Ek 2F;,

The various Ay are independent variational parameters: varying them to minimize (H) and
using 0FEy /0Ax = A} /Fx, we find an equation which can be written

2
Viae =0 19
Ek Z e 2Ek, (19)

Cancelling the prefactor and taking the complex conjugate gives back the standard gap
equation.

[Assume s-state until further notice, i.e., Ax = function of only |k|.]

Behavior of < n, > and Fy in groundstate

Let’s anticipate the result that in most cases of interest, Ay will turn out to be ~ const
\/W )

= A over a range > A itself near the F.S. Then we have < ny >= [uk|* = (1 —

and Fk = UKV = QAﬁ



\ y y

oW

Thus, behavior of < ny > qualitatively similar to normal-state behavior at finite 7" (but
falls off very slowly, ~ ¢~2 rather than exponentially). Fj falls off as |¢|~! for large €. [F(r)

in coordinate space: see below, lecture 7.]

BCS theory at finite T’

Obvious generalization of N-conserving GSWF: many body density matrix p is product
over density matrices referring to occupation space of states k 1, —k |.

5= T (20)

k

The space k is 4-dimensional, and can be spanned by states of the forms

Dep = uk|00 > v |11 >, “ground pair” (21)
Opp = 0|00 > —uy |11 >, “excited pair”

) =110 >, ), = |01 >, “broken pair”

As regards the first two, they can again be parametrized by the Anderson variables 6y, ¢x:
the difference, now, is that there is a finite probability that a given “spin” k will be reversed,
i.e., the pair is in state ®gp rather than ®45p. There is also finite probability that the pair
in question will be a broken-pair state, in which case it clearly will not contribute to < V' >
and thus not to the effective field. Thus, we can go through the argument as above and
derive the result.

1
A = —5 kak’ <oly > (22)
k/

but the < oLy > is now given by the expression
< 0|k >= —( él}) — PL(?I;;))Ak//Ek/ (23)
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and thus the gap equation becomes

A= =" Viae(Per)) = Pip)) A /2B (24)
w

We therefore need to calculate the quantities ng, ng. (Since the states |10 > and
|01 > are fairly obviously degenerate, we clearly must have ng + P](;g + 2P,(312 =1).

Since we are talking about different occupation states, there is no question of Fermi or
Bose statistics, and the probability of occupation of a given state is simply proportional to
exp —(BE, (8 = 1/kgT) where E, is the energy of the state.

Thus,
Pg}z ; ngi : P,S}), =exp —fEqp : exp—[Epp : exp —FEgp (25)

we already know that Epp — Egp = 2Ey, (but Ex = Ex(T)!). What is Egp — Egp? Here
care is needed in accounting. If all (MB) energies are taken relative to the normal-state F.
sea, then evidently the energy of the “broken pair” states |01 > or |10 > is € (which can
be negative!). In writing down the Anderson pseudospin Hamiltonian, however, we omitted
the constant term >y €x. Hence the energy of the GP state relative to the normal F'. sea is

not —Fy but e, — Ey. Hence, we have

Epp — Egp = Ex (26)
Epp — Egp = 2Ex

Hence tempting to think of BP states [10 > and |01 > as excitations of a “quasi-particle”

and the EP state as involving excitations of a 2 “quasiparticles.” (Formalized in Bogoliubov

transformation:
ozl'fT = ukaifT — Ukl (27)
etc. Return to this below)
Anyway, this gives!
P((;l;) : P§§3 ; ng =1:exp—FFx : exp —20FEx (28)
and .
() pl) _ 1— e _
PGP - PEP 1 + 2¢—BFx 4 ¢—2BFx - tanh(ﬁEk/2) (29>

INote that in the normal state, where “GP” is simply |11 > for ¢ < 0 and |00 > for € > 0, this gives
for ex > 0 < ny >= 2(Prp + Pp) = 2/(e’% + 1), and similarly for ¢ < 0, i.e. the correct single-particle
Fermi statistics.



Therefore, the finite-T BCS gap equation is:

Ax = — Y Viae QAEI:/ tanh S Ey /2 (30)

[Note: Also possible to derive by brute-force minimization of free energy as F(Ay), see e.g.
AJL app. 5D] This may or may not have (one or more) nontrivial solutions, depending on
form of Vig and value of T, see below.

Finite-T values of < my > and Fy : Fy is simply reduced by factor tanh fEy /2. < ny >
is given by a more complicated expression which correctly reduces to the Fermi distribution
for A — 0, T finite.

Alternative approach in terms of Bogoliubov quasiparticle operators:

Consider the operators o defined by (*)

o, = ua), — ovia_x o, and H.C. (31)

so that inverse transformation is:

+ — +
Ay, = Uy, + OUkO_k, —¢ (32)

It may be easily verified that the operators ay, satisfy the same fermion A.C. relations as
the ax., namely,

[aka; Oéli_/gl} - 5kk’5oa’ (33)

It is also straightforward to verify that?

0o |GP >= 0, o |GP >= |10 >, ayf |GP >= |01 > (34)

Hence the oyf’s effectively create independent quasiparticles—EP states can be regarded
as two independent excited quasiparticles corresponding to k T and —k |.
Since Egp — Egp = Ex and Egp — Egp = 2FEy, we can write the Hamiltonian in the

form

H = const + Y Byaf, ax, (35)
ko

At finite T" the QP’s will satisfy the standard Fermi distribution (but with g = 0, since
they can be created and destroyed):

nop(k) = (exp BEx +1)7! (36)

2Here it is essential to remember that |11 > is defined as ali'TaJ_rk 1100 >, not a’y ial‘tT\OO > [sign change].
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We see that the quantity (a0’ ,) = (a_kyar)* = F; is given by

(mhaty,) = wevg (g aug — ooy ) + terms with no e.v. (37)
= iy (g — (1 = nie))) = wevp (1 — 2my)

= uyvy, tanh fEy /2, as previously.

[cf. p. 5.6, foot, for sign +c.c.!]
Note: a Bogoliubov quasiparticle doesn’t carry unit particle number, since []\7 cap ] #

const. aj,, but does carry unit spin ([S, o] = oa).

Properties of BCS gap equation

(1) Independently of form of Vige, equation always has trivial solution Ax = 0 (N state)
(2) If Viae =V, > 0, no (nontrivial) solution (cf. below).
(3) for T' — o0, no nontrivial solution.
[reduces to — > Viaw Al = kT Ay, and —Vjge must have maximum eigenvalue.]
Hence, if 3 nontrivial solution at 7" = 0, must 3 critical temperature T, at which this solution
vanishes.

(4)Reduction to BCS form? (Vige = —V, = const with cutoff).

Possible if and only if typical energy range over which Vig changes appreciably is > A(0),
which as we can verify, is > T for T' < T, [self-consistent solution using BCS form]. If so,

define €, > A, T so that for e, within €. Vige = independent of €, and write BCS equation

in symbolic matrix form

A=-VQA=—-V(P +P)QA (+) (38)
where
Q = Ge - (tanh BEy /2) /2B (39)

P, projects out states |ex| > €., and P, states < €, (so P, + P, = 1). (+) can be rearranged

to give o R
P,QA JPN- .
(1+PQV) 1+ PQV

i.e. £ sums over multiple scatterings outside “shell”. Crucial point: since all states outside

shell by hypothesis have |e| > A, T the factor Q occurring in # is essentially e /2|e| and

3The ensuing argument implicitly assumes that Vi is not a strong function of the directions of kk'. If
it is, non-s-wave solutions may be possible (cf. part 2 of course).



hence ¢ depends neither on A nor on T, but is just some fixed operator which is a sort of
“effective potential within shell.” Moreover, by hypothesis, ty is practically constant, ~ o,

within shell. Hence gap equation becomes (putting to = —Vj)

tanh BFEy /2
Ak = —‘/b Z Ak/2§1k/ (41)
k’,‘Ek/|<Ec k’

This is exactly the equation originally obtained by BCS, who assumed Vi = const = Vj
within shell |ex|, |ew| < €., otherwise zero. Note one can show that solution of equation
doesn’t depend on arbitrary cutoff energy €. (Vj scales so as to cancel this).

(5)Solution of BCS model:

Rewrite using >, — N(0) [ de N(0) = 1(4)

At = / e (tanh B2, o o= —1/2( P v o) (42)
0 E de
[Factor of 2 cancelled by [ . de — 2 [5° de]
Obvious that no solution exists for V5 > 0. For V < 0:
Critical temperature: put 8 = 5., A — 0, hence E — |e|:
A= /0 - Wde — In(1.14B.¢.) (43)

= kpT. = 1.14e.exp —\ "' = 1.14._exp —1/N(0)| V|

This expression is insensitive to arbitrary cutoff energy e. since |Vy| ~ const + Ine., i.e.
cancels dependence. So, plausible to take value €. ~ wp, (as in original BCS paper): since
wp ~ M2 predicts T, ~ M~/ and helps to explain isotope effect. Also, assures self-
consistency since experimentally, T, < €.

Zero-T solution:
€e de
A= _— = sinh_l(ec/A(O)) >~ In(2¢e./A(0)) (44)
b e aor
= A(0) = 2e.exp —1/\ = 1.75T, (1.75 =2/1.14)

Since A(0) measured in tunneling experiments (Lecture 7), can compare with experiment.
Usually works quite well, but for “strong-coupling” superconductors where T, /€. not very
small, A(0)/kpT. usually somewhat > 1.75.

At finite temperature, T' < T, gap equation can be written
/ “[tanh BE(T)/E(T) — tanh fue/e} de = 0 (45)
0
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and [ extended to oo (since it converges)
= A(T) s of form (46)
A(T)/A(0) = f(T/Te)
(Or equivalently A(T) = kT,f(T/T,)). Roughly,
A(T)/A(0) = (1= (T/T)")"2, (47)

Near T, exact results obtainable, cf. below:

A~ LA =T/T)? or A(T)/kT. ~3-06(1—T/T.)"?

(6)Back to the question of the Fock term

We earlier neglected the Fock term in the energy, namely,
1
H — puN >pok= —= Y Viae (ko) (nico) (48)
kk/o
This is equivalent to a shift in the single particle energy:
e = ek — »_ Viae (nie) (assuming (ny,) independent of o) (49)
kl
and in general this depends on A. We have seen that crudely speaking, (ny) is smeared out
away from its N-state value in the S state over an order ~ A, and moreover the smearing is
symmetric around the Fermi surface*. Thus, if Viqe is approximately constant over e > A,
the renormalization of € is the same in the N and S states and has no effect on the energetics
of the transition.
(7) Generalizations of BCS
(a) Sommerfeld — Bloch: = A may be f(i1), but qualitatively unchanged.

(b) Landau Fermi-liquid: to the extent, 3= < nx > unchanged on going from N to S,
the “polarizations” which bring the molecular field terms into play do not occur = only
effect is m — mx: molecular-field terms do not affect the gap equation. But they do affect
the responses, just as in the normal state. (cf. Lecture 8.)

(c¢) Coulomb long-range terms: have no effect on gap equation, do affect the responses.

(d) Strong coupling: crudely speaking, effects which vanish for A/wp — 0. (e.g. ap-
proximation of constant renormalized V' not exact). Need much more complicated treat-

ment (Eliashberg). Generally speaking, this treatment provides only fairly small corrections

4Argument may fail in presence of severe particle-hole asymmetry: even if A itself is constant, may lead



to “naive” BCS. (e.g. ratio (A(0)/kpT.), 1.75 in naive BCS, can be as large as 2.4 (Hg,
Pb)).
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