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Thermodynamic and response properties of superconduc-
tors (other than EM)

Recap: For any temperature < T, superconductor characterized by ‘energy gap’ Ag(7T)
which under normal conditions — A(T") [independent of k| for |ex| < kT,. Quan-
tity A(T') satisfies gap equation, — 0 at 7. and — const (= A(0) ~ 1.75kpT;) for
T — 0. Many body density matrix is product of density matrices over ‘occupation
space’ of k 1, —k | and is diagonal with respect to 4 states:

|GP) = ux|00) + vi[11)
IEP) = v£]00) — w[11)  E = 2Ey(T)
[BP) = [10), [01) E = Ex(T)

with v = Ak/2EkZ here Fy = (612< + ’Ak’2)1/2.

Most important expectation value characterizing the S phase is the ‘pair wave function’

F(r) = (¢, (r)yY1(0)) = > Fxexpikr, Fx = (a_g|aky).
We saw in Lecture 6 that

Fk = UKkVk tanhﬁEk/Q = (Ak/QEk) tanhBEk/Z (1)
and so A
=3 =K tanh k
F(r) zk: T (BEy/2) exp ikr (2)

In the case of s-wave pairing, Ay is not a function of k and we can write

Zexp ikr = N(0) /dek /ko exp ikr = N(0) /dek sin kr (3)
- 4m kr

SO

sin kr Ayg

F(r)=F(r) = N(0) /dek T 2By tanh(SEy/2) (4)

For the moment, no restrictions on [dey (though lower limit cannot be < p!). We will
assume in what follows

T. < ep (5)
and hence kp&’ > 1 where £ ~ hvp/A(0) (see below), as found experimentally.

3 Regimes:

(1) For r < kp~ !, integral dominated by k > kp, i.e. |e] > ep > T, (or A). In this
regime, behavior of ‘exact’ Fy similar * to that of 2 particle wave function v, and
Eyx — |ex|, tanh SEy /2 — 1. Hence, apart from overall constant, wave function in
this regime is that of 2 particles at Fermi energy colliding in free space.

*To get this right we need to use the true potential Vs, not the BCS approximation to it.
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(2) For r > kp~! but 7 < hop/A (~ &, see below), energies entering integral are
mostly > A, and so again can put Eyx — |ex|, tanh SEy /2 — 1. If also Ak ~ const
in this regime (true provided ‘range’ of Vi ~ €r), then in this regime

F(r) = A(T)N(0) /dﬁk ;;I;i; ~ AT)N(O) sin kpr /de cos(er/hve)

2kpr 14
1 sin kpr
~ —A(T)N(0) x In factor (6)
2 kFT

where the In factor is crudely ~ Inr/&, (§ ~ hvup/A). This expression is, apart
from a multiplying constant and the In, essentially the wave function of the free
particles in an s-state at the Fermi energy:

W(r) ~ Z ke sin kpr (7)

kgr
Ik[=he ¥

(3) The most interesting regime is r 2 hvp/A. Here the relevant energies are all
< kT, and we can write (again approximating k ~ kg in denominator, etc.)

Fir) EA(T)N( sin kpr /Oode cos(er/hvg) tanh S/€2 + A2(T)/2
2 ker Jo €2+ A%(T)

)
=

sin kpr

= A(T)N(0) x J(r, A, B) (8)

kgr

Since A/A(0) = f(T/T;) , J can in fact be a function only of the variables (r/£)
and T/T, (for &, see below).

Consider two limits:

(1) In the limit T'— 0 define ¢’ = hop/A(0), then

> CcoS T

= dr ———=
o VER+(r/g)?

This expression is in fact the Bessel function Ky(r/&'): for small values of the
argument, it diverges as In(&'/r) [cf. above] while for large values we have

J(r) (9)

J(r) ~exp—v2r/¢ (10)

Thus the quantity & = hop/A(0) characterizes (to an order of magnitude)
the ‘radius’ of a Cooper pair. (In the literature, it is conventional to use the
quantity & = hvp/7A(0) = 771¢ known as the Pippard coherence length).

(2) In the limit T'— T, the gap A(T) tends to zero, and the expression for J(r)
becomes
> de

J(r) :/0 - cos(re/hvp) tanh B.e/2 (11)
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or introducing &"” = hvp kT, (~ &')

*d
J(r) :/0 % cosxtanhﬁ = f(r/&" (12)

Again it is clear that J diverges as In(r/£"”) for r — 0, and somewhat less
obvious (but true) that it tends to zero exponentially for r > ¢”. Thus as
T — T, pair radius is ~ £”: note that this is of the same order as & (or &)
and doesn’t diverge in this limit.

In intermediate range of T, J is somewhat complicated but still has range ~ &'.

Normalization: Consider the quantity:
N = /|F |2dr— tanhQ(BEk/Q) (13)

It is clear that the main contribution comes from |e| < A(T), kgT., where we can ap-
proximate Ay ~ A(T). Thus N = |A(T)?N(0) [;°(de/AE?) tanh® BE/2. For T — 0,
this is ~ N(0)A(0); for T — Ty, it is ~ N(0)|A(T)|?/T. (Interpretation as ‘number of
Cooper pairs’).

Thermodynamics

The most directly observable property is the specific heat ¢,(7"). Recall that in the
normal phase we have

en(T) =T + BT (14)

y=" @Z) kp? ~ nkp/er, B~ nkpfp®
Since for T ~ T, we usually have T,/er < (T./0p)>, phonon contribution is usually
negligible (if not, it can be subtracted out since it is expected to change little in the
superconducting phase). Note in type I superconductors, ¢s can be measurable not only
directly but from H.(T).
To calculate ¢4(T"), can either (a) calculate temperature-dependent mean energy F(T')
and differentiate; (b) calculate entropy S(7T') and use ¢s = T'dS/dT. Do latter:

=3 Su(D) (15)
k

For each ‘pair space’ k 1, —k, |, we have

Sk(T) = —kp Y _ pnInp, = —kp(Pap In Pop + 2Pgp In Pap + Pep In Pyp) (16)

n
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Since Pap : Pgp : Pep = 1 : e PPk ¢=2PEx  this gives

BEx

—i—ln(l—l—e_’BEk)} (17)
where recall that Ey = Eyx(T). When we differentiate with respect to temperature, the
explicit d/df gives a contribution to c of (1/2)kpfB%sech? BE) /2, and the dependence of
FEy on T gives a contribution ﬂElzldEk/dB times this. Thus

1
es/kp =5 B> (Ex + BdEy/dB)Ey sech® BEy /2 (18)
k
(A) In limit T"— 0, can neglect the second term: result is thus the specific heat of a

gas of independent Fermi particles of fixed energy Ex. [note one k contains both
k1 and -k |], i.e.,

2F
E(T) = Ekj eﬁTir ¢s(T) = dE/dT (19)
Explicitly,
cs(T)1 0 = const B%2[A(0)]*/*(dn/de) exp —BA(0) (20)

hence can measure zero-T' gap A(0).

(B) In limit 7' — T, put Ex — |ex| except in dEy/df, then first term simply gives
N-state specific heat. The difference between the S- and N-state specific heat at
T, is therefore given by

Acon = 5 bt S Bic(dFic/df) sech? flel /2 21)
k
= ikBﬁgddﬁ 2T r_r.(dn/de) /OOO sech? B.le|/2 « 28! (22)
=2 (@) [, &
Now for T — T, BCS gap equation gives A?(T) = (3.06 kgT.)*(1 — T/T.) so
Acs, = (1/2)(3.06 k) T, (dn/de) (24)

or

Acsn/cn(T,) = (1/2)3.06%/(7%/3) = 1.43
Acgn/cn(Te) = 1.43 (25)

Note, refers to electronic contribution only

in reasonable agreement with experiment on most superconductors other than Pb
and Hg, where the experimental value is larger (see Table in Kuper p. 36: ratio is
1.15-1.6 for most elemental superconductors, 2.07 for Nb, 2.1 for Hg, and 2.65 for
Pb).
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Response to external fields

Spin susceptibility x: in real life, if apply magnetic field, couple to both spin + orbital
motion. Can sometimes separate out ‘spin’ effect by using very thin/dirty samples. Usual
measurement is from Knight shift. Assume for the moment simple BCS model, and in
particular neglect any Landau Fermi liquid-type effects. Then apply weak field:

Magnetic field cannot shift energy of states |00) or |11) since these both have total
spin 0. But shifts energy of |10) and |01):

Ex(1,0) = BEx —pugH, Ex(0,1) = Ex +ugH

~ exp —B(Ex — psH)
(I +exp—BEK)?

(neglect 2nd-order changes in normalization),

P¢(1,0)

etc. (26)

3 exp —B(Ex — ppH) — exp —B(Ex + ppH)

M = i 3_(A(1.0) = A(0.1)) = o Lt e PO

k

~ 9,2 B exp —BEx ) dj * 2
_2MBH¥ 0+ oxp BB, = i H <d€>/0 de (3/2)sech®(BE/2)  (27)

Since Xy, = p3(dn/de), this gives
X(T)/xn = / de (8/2)sech®(BE/2) =Y (T/T.) + Yosida function (28)
0

The Yosida function is characteristic of the response to fields which cannot affect the
Cooper pairs: it is in a sense a measure of the ‘density (fraction) of normal component’.
For T'— 0 Y tends to zero exponentially: for 7' — T, , it is equal (in the simple BCS
model) to 1 —2(1 — T/T;.) (The number 2 is exact!).

Normal density p,: momentum of |00)x and [11)y is 0, of |10)y is hk etc. Let us
imagine a probe which does not affect the pairs, but shifts the energies of the BP states
by Ex(1,0) — Ex — hvk, Ex(0,1) = Ex + hvk. Such a probe is a uniform (in space)
transverse vector potential A (actually v = A/m), if we assume for the moment it does
not act on the pairs. We are then interested in the mass current (momentum density)
given by

P = hk(P(1,0) - Pi(0,1)) (29)
Kk

It is clear that the analysis goes through as for y with Av -k replacing ug: the average
of (v - k)2 over the Fermi surface gives (1/3)v?kp®. Hence

P = (1/3)(dn/de) W*kp? Y (T/T,) v (30)
In the normal phase P is just (1/3)(dn/de) i2kp? v, so define p,/p as P/P,,:
Pn/P =Y(T/Tc) (31)

[Note: in general it is difficult to realize this thought-experiment!]
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Fermi-liquid effects

These are the most easily modeled by the molecular-field technique, which gives the
general result (e.g.) that if x is the ‘free-superfluid-gas’ expression then

xo(7T)

O T T nol@) )
Since x0(T') = p3(dn/de)Y (T), this gives at once
n/de)
(r) = QLB Ry = (i (33)
" (1+ F)Y(T) a1

xX(T)/xo = m

In superfluid *He, where F{§ is large, the corresponding effect is quite dramatic.t
Normal density

Again the molecular-field technique can be applied. Quote result only for translational-

invariant system:

_ Pro _ nm*Y (T)
T (U/3)F by 2(dnfde) " pon 1+ (1/3)FFY(T)

(35)

or

(A (1/3)FY)Y(T)
/P =17 (1/3)F}Y(T)

Note that there is now no cancellation between m*/m and 1+ (1/3)F} as in the normal
phase. Thus, in a translation-invariant system (such as 3He) it is possible to measure Fy
exactly in the superconducting state, independently of m*. (but beware strong coupling
effects!). In the limit 7" — T, p,/p tends to 1 as we expect.

(36)

 3He is not singlet-paired, so the result must be generalized.



