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Where is the energy saved?

A rather generic and unsatisfying feature of all the theoretical scenarios discussed in the
last lecture is that, while purporting to explain part or (occasionally) all of the existing
theoretical data, they make few if any quantitative predictions about phenomena as yet
unobserved. (In a few cases a theory may seem to do so, but on close examination
it usually turns out that the ‘prediction’ is in effect a simple extrapolation of trends
already observed and is thus not terribly surprising.) In this lecture I review a couple of
theoretical scenarios which, by contrast, have attempted to make quantitative predictions
about experimental quantities which at the time of the prediction were not measured,
and examine the extent to which the predictions agree with subsequent experiment.
The first is the ‘inter-layer tunneling’ scenario of P.W. Anderson and collaborators, the
second my own ‘midinfrared’ scenario. Both focus primarily on the ‘mechanism’ of
the superconducting transition (in fact, neither as such claims to explain the N state
behavior in detail∗), and both emphasize, in rather different ways, the question ‘where
is the energy saved?’ One more feature which the two scenarios have in common (and in
which they differ from the vast majority of other theoretical proposals in the literature)
is that both take very seriously the observed dependence, in homologous series, of Tc(n)
on the layer multiplicity n. So it is appropriate to start by saying a word about this:

To recapitulate the results quoted in lecture 6, in the Ca-spaced homologous series
(Bi, Tl, Hg) Tc(n) increases with n as far as n = 3, thereafter apparently decreasing (at
least in the cases, such as the Tl-2 series, where one can be reasonably sure that the
material is single-phase). In all the cases quoted, the Tc’s for n ≤ 3 appear to fit rather
well the formula
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However, we should strongly caution that this apparently impressive coincidence among
four different series (Bi, Tl-1, Tl-2, Hg) is almost certainly less significant than it looks,

since the ratio α of T
(2)
c − T (1)

c to the single-layer transition temperature T
(1)
c is quite

different for the Bi and Tl-1 series (α ∼ 2) to that for the Tl-2 and Hg series (α ∼ 0.5).
My own belief is that one should attach significance to the relation (1) only in these

cases (Tl-2, Hg, possibly Ca) where T
(1)
c is already of order 100K. The above statements

refer exclusively to Ca-spaced homologous series: when the spacer is (entirely) Sr or
Ba, by contrast, the 2- and 3-layer members are almost invariably nonsuperconducting,†

probably though not certainly because of the effect of ‘intruder’ oxygens.
Clearly, there are two major classes of explanation for the observed behavior of Tc

as a function of n.

(1) The mechanism of superconductivity is entirely (or overwhelmingly) confined to
the single CuO2 planes, and the reason that Tc(n) increases with n in the Ca-

∗In work which is logically closely related to the ILT scenario, Anderson has claimed to explain the
N-state properties. However, no direct quantitative test has been suggested for this part of the scenario.
†But cf. Jim Eckstein’s recent result in Bi2Sr3Cu2O8.
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spaced series is that the properties of the individual planes are ‘improved’ in some
way in multilayer materials.

(2) The increase of Tc is a result of some kind of interaction between the different
CuO2 planes.

Let’s first discuss some possible class-1 explanations. In the early days, it was often
postulated that the effect of adding more planes was simply to increase (or otherwise
improve) the number of carriers per plane. Certainly, NMR measurements in Hg-2223‡

do seem to indicate that the number of carriers in the central plane is different (probably
less) than that in the outer ones of the trilayer, and this is not entirely unexpected from
the point of view of the electrostatics. However, a major argument against attributing
the increase in Tc to this effect is simply that it is by now very well established that in all
superconducting cuprates, including the single-layer ones like Tl-2201, Tc has a maximum
as a function of doping; it then immediately follows that no change in the doping can by
itself increase Tc above this maximum. A similar argument refutes the suggestion that
adding extra planes changes the buckling; all the evidence is that the ‘optimal’ buckling
is zero, and this is already attained in the one-layer Tl and Hg compounds. A third
class-1 proposal is that as a result of adding extra planes the dielectric screening within
the individual planes is changed; this is certainly likely to be true, since e.g. for a 3-layer
material the rather polarizable oxide layers are replaced, for the middle plane, by very
unpolarizable Ca++ ions. The hypothesis that it is this effect which is responsible for
the increase in Tc is more difficult to refute, and in fact has the advantage that it might
go some way towards explaining why the introduction of (highly polarizable) intruder
oxygens appears to depress Tc so severely: however, it would not seem to explain why
it is depressed way below the one-plane value, nor why in the Ca-spaced compounds
Tc decreases for n ≥ 4. So it seems at least possible that the true explanation of the
variation of Tc with n is of class 2; both the principal scenarios to be discussed in this
lecture are of this class.

The interlayer tunneling scenario¶

The ILT scenario (or, as its proponents would call it, theory) for HTS dates from Septem-
ber 1987, and was vigorously maintained by Anderson and a few collaborators for about
ten years thereafter. Although it is by now largely discredited, I believe it is well worth
reviewing in some detail, since it seems to me to have many of the generic characteris-
tics that one would hope for in any eventually successful theory, in particular in that it
makes very specific and quantitative predictions, and hence is eminently ‘falsifiable’ in
the sense of K.R. Popper.

The ILT scenario rests on two major hypotheses:

‡Michalak et al., Physica C 235, 1673 (1994).
¶Ref.: P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates, Princeton Univer-

sity Press, 1997, ch. 7.
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(1) The behavior of the electrons in a single CuO2 plane is not describable by Fermi-
liquid theory, and as a result hopping of single electrons between neighboring plane
is strongly inhibited.

(2) In the superconducting phase, by contrast, Cooper pairs can tunnel relatively
freely between neighboring planes, and it is the resulting lowering of the c-axis
kinetic energy which is, wholly or dominantly, the source of the superconducting
condensation energy.

Regarding hypothesis 1, it is not always very clear exactly what is the correct de-
scription of the single-plane state of the electrons: it is variously described as ‘RVB’,
‘spin-charge separated’, ‘tomographic Luttinger liquid’ and other things. What is com-
mon to all the variants is that the single-particle in-plane Green’s function does not
have a simple pole, even in the limit ω → εF (if indeed the concept of a Fermi energy
makes sense!); or in less technical language, that the elementary excitation of the single
planes are not FL-type quasiparticles but much more complex entities involving correla-
tion of many electrons. The argument is then that since the inter-plane tunneling term
in the Hamiltonian is of the form

∑
kk′ tkk′a

†
knak′n+1 + h.c. i.e. it annihilates exactly

one electron on plane n and creates one on plane n + 1 (or vice versa), it is as it were
wrongly matched to the in-plane elementary excitation spectrum – to hop successfully,
the electron would have as it were to change all the other degrees of freedom on the
recipient plane so as to create the necessary many-body excitation. The exact details of
the model appear to be somewhat time-dependent, but the generic upshot is that the
reduction in total N-state energy due to interplane tunneling, which in a textbook metal
would be of order t2⊥N(0) where t⊥ is the order of magnitude of tkk′ , is not realized. On
the other hand, it is argued, when Cooper pairs form, they can tunnel freely, so the ∆φ
dependent term in the Josephson energy is realized. The crucial point is that, unlike in
the standard treatment of the LD model (see lec. 9), there is no constant term, i.e. the
saving at (say) ∆φ = 0 is real.

More formally: let us define a generalized LD model by the statement that to lowest
order in the interplane tunneling matrix element t⊥, the Josephson-like energy relative
to the normal ground state induced by tunneling between neighboring planes with a
difference ∆φ in the phase of the Cooper-pair wave function is of the form

E(∆φ) = K − J cos ∆φ (2)

where for the moment K and J are treated as phenomenological constants. In the stan-
dard ‘Ambegaokar-Baratoff’ treatment of the LD model we have K ∼ J (with an exact
equality in the case of exact particle-hole symmetry), and thus, as already emphasized in
lecture 9, interplane tunneling does not lower the energy of the superconducting ground
state relative to the normal one. However, it is characteristic (in fact a defining postu-
late) of the ILT model that K is either zero or � J , and hence that in the S ground
state (∆φ = 0) the energy is lowered relative to the normal ground state by an amount
J per pair of planes. In general, J may of course be different for inequivalent pairs
(e.g. we would expect intuitively that in Bi-2212 J is larger for the pair of planes which
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compose a bilayer than for a pair of neighboring unit cells). It is supposed that it is this
energy saving which is all, or at least a large part (let us say η) of the superconducting
condensation energy Econd.

The remarkable thing about this idea is that it is subject to more or less direct
experimental test, since in a single-plane material the coefficient J is directly proportional
to the (3D) c-axis superfluid density∗ ρs⊥. In fact, directly from the considerations of
lecture 9 we have the relation

∆T⊥ =

{
~

2md

}2

ρs⊥ (3)

where ∆T⊥ (∝ J) ≡ ηEcond is the energy saving per unit volume and d is the interplane
spacing. Using the relation between ρs⊥ and the c-axis penetration depth λ⊥ and as-
suming the local magnetic permeability µ to be 1, we obtain a prediction for λ⊥ which
is conveniently written in the form†

λ⊥ = η−1/2λILT, λILT ≡
{
mc2

Econd

a0A

16πd

}1/2

(4)

where Econd is now the condensation energy per formula unit (i.e. per CuO2) at T = 0,
a0 is the Bohr radius and A the area per formula unit. Note that the formula for λILT
does not involve the poorly known c-axis dielectric constant ε⊥.

It is interesting to compare the prediction (4) with that which would follow from the
application to each inter-plane ‘junction’ of the Ambegaoker-Baratoff formula (part I,
lecture 13)

IcRn =
π∆

2e
(5)

with ∆ taken to have the BCS value 1.76kBTc. If we call the value of λ⊥ predicted in
this way λρ we have according to the results of lecture 7

λρ =

{
~c2ε0Rn
π∆

}1/2
1

2d
(6)

We saw in lecture 7 that according to the Basov plot,‡ most of the measured values of
λ⊥ whether for single- or multilayer cuprates,§ seem to fall close to λρ.

It is clear that if the predicted value of λILT for a given single-plane cuprate is of the
same order as that of λρ, an examination of the experimentally measured λ⊥ will not

∗The case of a multilayer cuprate is more complicated, since in this case Econd comes predominantly
from the ‘strongest’ tunneling links whereas ρs⊥ is determined primarily by the ‘weakest’ ones: so there
is no one-one correspondence between the two quantities.
†AJL, Science 274, 587 (1996). Note that I have incorporated, here, an extra factor of 2 into the

definition of λILT.
‡D.N. Basov et al., Phys. Rev. B 50, 3511 (1994).
§In the multilayer case we would expect both λ⊥ and ρ⊥ to be diminished by the ‘easiest’ links, so

this result is expected
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necessarily be very informative. This is the case for La2−xSrxCuO4 at various dopings
since both λILT and λρ lie in the range 3− 15µ (cf. Anderson, Science 279,1197 (1998)).
However, the situation is quite different for Tl-2201: in this case λρ is around 20µ,
whereas from the measured value of the condensation energy we have λILT ∼ 0.9µ (note
this corresponds to a discrepancy of a factor ∼ 500 in the more physically meaningful
quantity ρs⊥!). For Hg-1201 the value of λρ is ∼ 10µ; the prediction for λILT is less
accurate than for Tl-2201 because the condensation energy is less reliably measured,
but λILT should again be of order 1µ. This is a crucial test of the ILT model, at any
rate in the simple form embodied in eqn. (1), should be a measurement of λ⊥ for these
two materials.∗ This has been accomplished by Moler, Kirtley and co-workers by a very
direct technique (imaging of ‘c-axis vortices”: note that while the resolution in these
experiments is insufficient to measure λab, it is more than adequate for the measurement
of λ⊥). The results are unambiguous:‡‡ λ⊥ ≈ 17 − 21µ for Tl-2201 and ≈ 8 for Hg-
1201, in clear agreement with the predicted λρ and order-of-magnitude disagreement
with λILT. Thus the ILT scenario, at least in its simplest and most discussed version,
seems to be unambiguously refuted.[
Two cautions:

(1) It may be just possible to rescue the scenario if one is prepared to go beyond the
simple ansatz (1), but only at the cose of postulating rather wild fluctuations in
the c-axis tunneling properties for which there seems to be no obvious independent
evidence (see AJL, ref. cit.)

(2) The Moler-Kirtley experiments cannot exclude a much watered-down version of
the model, in which most of the condensation energy (in fact all in single-plane
materials) comes from (unspecified) in-plane effects but the ‘boost’ in multilayer
materials derives from c-axis tunneling. See S. Chakravarty et al., PRL 82, 2366
(1999); Phys. Rev. B 67 100504 (2003)

]
.

In the rest of this lecture I want to discuss a rather different approach to the problem
of energy saving.† For simplicity I will start with the case of a single-plane material, and
subsequently generalize the discussion to the multiplane case. Consider, then, a single-
plane cuprate such as Tl-2201 or Hg-1201. I start from four fundamental assumptions:

(1) The usual separation of the electrons into ‘core’ and ‘conduction’ electrons is le-
gitimate, so that we can write down an effective Hamiltonian for the conduction
electrons alone, with the effects of the core electrons completely embodied in an
external potential and the screening of the inter-conduction electron Coulomb in-
teraction.

∗The first indication that λ⊥ was � λILT came from the c-axis optical experiments of van der
Marel and coworkers, who established the absence of a c-axis plasmon for ν > 100cm−1. However, the
conversion from νρ to λ⊥ involves the c-axis dielectric constant, which has been the subject of some
controversy.
‡‡Moler et al., Science 279, 1193 (1998); PRL 81, 2140 (1998)
†Ref.: AJL, Proc. Natl. Acad. Sci. 96, 8365 (1999).
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(2) The dominant players in superconductivity are the electrons in the CuO2 planes.

(3) Ionic motion is irrelevant, at least in the first approximation.

(4) For the purposes of analyzing the mechanism of superconductivity, we may neglect
inter-layer tunneling.†

Of these assumptions, (1) and (2) are virtually universal in the literature on the
cuprates and probably do not need detailed justification, while (3) may be justified
by appealing to the absence of any appreciable isotope effect in the higher-Tc cuprates
(lecture 11). Postulate (4) is of course the exact opposite of what is postulated in the
ILT model: the simplest justification is to note that if we describe the c-axis transport
by an incoherent hopping model with some plane-to-plane hopping rate τ−1, then we can
infer τ from the measured value of the c-axis resistivity ρ⊥ (plus a reasonable estimate
of the in-plane DOS) and if we do so we find for all single-plane materials τ � ~/kBTc,
where the latter is presumably the relevant ‘timescale’ characterizing the formation of
the superconducting state.

It is convenient to make, for the sake of a simple exposition only, two further as-
sumptions:

(5) The Coulomb interaction between conduction electrons in different CuO2 planes
may be neglected (in a single-plane material)

(6) The dielectric constant εcore(q, ω) which represents the screening of the Coulomb
interaction between conduction electrons in the same CuO2 plane by the ‘core’
electrons (both in- and off-plane) may be approximated by a real positive constant
εsc.

If we accept assumption (6), then a reasonable value of εsc can be inferred from the
optical data in the region (say) 2− 4eV, and is of order 4− 5.

In the light of assumption (5), the Hamiltonian is now simply the sum of independent
Hamiltonians describing the different CuO2 planes, and in the light of assumption (6)
the Hamiltonian of a single plane may be written

Ĥ = T̂‖ +
∑
k

ρ̂kU−k +
1

2

e2

2ε0εsc

∑
q

|q|−1ρ̂qρ̂−q ≡ T̂‖ + Û + V̂ (7)

where ρ̂q is the 2D Fourier transform of the conduction-electron density, k is a reciprocal
lattice vector and T̂‖ is the (true) in-plane kinetic energy. This Hamiltonian is very
generic, and most of the models used as starting points in the literature (Hubbard, t−J
. . . ) can be regarded as simplifications or special cases of it. Note that it is complete: if
one believes that e.g. spin fluctuations, anyons or excitons play an important role, they
have to be derived from (7), not added to it!

Imagine that we could somehow cool the system described by (7) down to zero
temperature but forbid it, by fiat, to form Cooper pairs (or undergo any other phase

†Except in so far as it will eventually be necessary to stabilize genuine 3D long-range order.
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transition), i.e. we assume it to find the best ‘normal’ ground state.¶ If we now relax the
constraint, we know from experiment that the system will form pairs, and the reason it
does so, at T = 0, is, trivially, to reduce its total energy. It follows that at least one of
T̂‖, Û and V̂ must decrease, possibly though not necessarily at the expense of an increase

in the other two. Let us suppose, for the sake of definitions, that 〈V̂ 〉 decreases (without
any assumption about 〈T̂‖〉 and 〈Û〉; nothing actually depends on this. Now, as we shall

see in a moment, the value of 〈V̂ 〉 in an arbitrary state of the system can be expressed
as a sum rule, i.e. as a sum of contributions from different regions of wave vector q and
frequency ω: so a natural question is: In what regime(s) of q and ω does the saving∗∗

of Coulomb energy occur? Oddly enough, until recently this question seems hardly to
have been asked in the literature.

Let’s try to be a bit more quantitative. An exact expression for the Coulomb energy
is

〈V̂ 〉 =
1

2

∑
q

Vq〈ρ̂qρ̂−q〉 =
1

2π

∑
q

∫ ∞
0
dω Imχ(q, ω),

(Vq ≡ e2/2ε0εsc|q|)
(8)

where χ(q, ω) is the complete (true) density-density correlation function of the system.
Note that this expression is exact, independently of the effects of lattice structure. How-
ever, the latter now leads to a complication: we would like to express χ(q, ω) in terms of
Vq and the ‘bare’ correlation function χ0(q, ω), by which we mean the quantity defined
diagrammatically by omitting all those graphs in χ(q, ω) which can be cut into two by
cutting a single Coulomb line of momentum q. The problem is that χ0 is actually a
matrix in the reinforced space, i.e. it is specified by two arguments, q and q + K, and
this leads to rather a messy form for V̂ (see appendix B of AJL, ref. cit.). For pedagogic
simplicity I will therefore assume at this point that the matrix can be approximated by
its diagonal terms: while in the general case this approximation may introduce some
error, it can be shown (ref. cit.) that it does not affect appreciably the arguments I shall
give concerning the long-wavelength limit.

With the above approximation we then have

χ(q, ω) =
χ0(q, ω)

1 + Vqχ0(q, ω)
(9)

and inserting this into the expression for 〈V̂ 〉

〈V̂ 〉 = − 1

2π

∑
q

∫
dω Im

(
1 + Vqχ0(q, ω)

)−1
(10)

Note that formula (10) is actually valid in any number of dimensions, provided that Vq
has the appropriate form. In particular, in the bulk 3D case we have Vq = e2/ε0εscq

2,

¶The nearest approximation to this in real life is to cool in a strong magnetic field, as in the experi-
ments of Boebinger.
∗∗Or increase, if 〈V̂ 〉 indeed increases.
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and since the (longitudinal) dielectric constant ε‖(q, ω) is conventionally defined as∗

1 + (e2/ε0εscq
2)χ0(q, ω), eqn. (10) takes the simple form

〈V̂ 〉 = − 1

2π

∑
q

∫
dω Im

1

ε‖(q, ω)
(11)

where the integrand – Im 1
ε‖(q,ω)

is usually called the loss function and is directly mea-

sured in transmission EELS experiments. In 2D one has to be a little more careful, since
no true analogy to ε‖ exists: it is most convenient to write expression (10) in the form

〈V̂ 〉 = − 1

2π

∑
q

∫ ∞
0
dω Im (1 + qK(q, ω)/εsc)

−1 (12)

where the quantity K(q, ω), which has the dimensions of length, is related to the 3D
dielectric constant by

K(q, ω) =
1

2π
d̄(ε‖(q, ω)− εb) (13)

where d̄ is the interplane separation and εb is the ‘background’ (non-conduction-electron)
contribution† to ε‖(q, ω).

Let’s now consider the contribution to the fundamental expression (10) for 〈V̂ 〉 from
different regions of q (in the N phase). To do this, it is convenient to note the Kramers-
Kronig relation for χ0(q, ω):

1

π

∫
Imχ0(q, ω)

ω
dω = χ0(q) (14)

where χ0(q) is the ‘bare’ static susceptibility, which we expect to be not too strongly
varying with q and of the order of magnitude of χ0(0) ∼ dn/dε. From this relation we see
that in general‡ is we would expect Imχ0(q, ω) to be of the general order of magnitude
of dn/dε (and then, by the KK relation applied to general ω,the real part should be of
the same order of magnitude). This then leads us to define a 2D ‘Thomas-Fermi’ wave
vector qtf by the relation

Vqtf

(
dn

dε

)
= 1 (15)

For a noninteracting-band model with effective mass m∗, we have dn/dε = m∗/~2 and
so

qtf = 2(m∗/m) ε−1sc a
−1
0 (16)

(a0 = Bohr radius). With m∗/m ∼ εsc ∼ 4 this gives qtf ∼ 4Å−1, irrespective of
the density of carriers. Note incidentally that in 3D we can apply the same general
arguments, and obtain the standard result

qtf =

[
e2

ε0εsc

(
dn

dε

)]1/2
=

[
2

π

m∗

m

1

εsca0

]1/2
kF

1/2 (17)

∗Modulo some rather messy questions concerning the treatment of the factor εsc.
†The equality εb = εsc holds only in specific models.
‡These arguments need some modification in the limit q→ 0, cf. below.
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The above estimates should be understood in an order-of-magnitude sense only, but
what is interesting is that in both the 2D and 3D cases qtf is of the general order of
magnitude of the Fermi wave vector qF (and certainly not much smaller).

The significance of the quantity qtf is that it separates two regimes where the effect
of changing χ0(q, ω) may be qualitatively different. Consider first the regime q � qtf.
In this regime, by the above arguments, we have |Vqχ0(q, ω)| � 1, and thus can expand
the integrand in the expression for 〈V̂ 〉:

〈V̂ 〉q�qtf ≈ +
1

2π

∫
dω VqImχ0(q, ω) = Vq〈ρ̂qρ̂−q〉0 (18)

where the quantity 〈ρ̂qρ̂−q〉0, which is essentially defined by the (. . . )-equality, is the
(hypothetical) ‘bare’ static correlation. This is of course exactly what one would get
from straightforward perturbation theory, and one sees that in this regime the only way
to decrease the contribution to 〈V̂ 〉 is to decrease the quantity 〈ρ̂qρ̂−q〉0. In any theory
which is remotely of BCS-like type, formation of Cooper pairs with an order parameter
which is uniform in sign can only increase the ‘bare’ static correlation since

〈ρ̂qρ̂−q〉 ∼
∑
k

F ∗k+q/2Fk−q/2 (19)

and one thus reaches the conclusion that if indeed Coulomb energy is to be saved in this
regime, the quantity Fk must (plausibly) change sign, as a function of k. Thus it is not
particularly surprising that a state of the dx2−y2 type is found (although of course it is
not uniquely selected by this argument).

The opposite, ‘overscreened’ regime, q � qtf (so that |Vqχ0(q, ω)| � 1) is more
complicated to analyze, since in general the contribution to 〈V̂ 〉 from this regime depends
on both the real and imaginary parts of χ0. However, one can see that a uniform increase
in χ0 will lead to a decrease in 〈V̂ 〉; physically, this reflects the fact that the screening
of the Coulomb interaction becomes more effective and the energy is thereby lowered.

A very important point, which I believe is not widely appreciated, is that the small-q
(‘overscreened’) regime is much more important relative to the phase space as a whole
in 2D than in 3D. In 3D, the phase space goes as q2 dq, and there is no particular
compensating factor in the loss function −Im

(
ε‖(q, ω)

)−1
; in 2D, by contrast, not only

is the phase-space factor only q dq, but the q is cancelled by the behavior of the Coulomb
matrix element in the denominator. Thus, to a first approximation, all values of q
contribute equally.

My personal conjecture is that the main regime in which Coulomb energy is saved
by the formation of Cooper pairs is that of small q (specifically, say, q . 0.5Å−1). If we
grant that, then the next question is: Where is ω? To answer this we use the ‘Willie
Sutton principle”: you can’t take it away if it isn’t there in the first place! And in the N
phase, if we confine ourselves for the moment to ω . 3eV, the place where the Coulomb
energy is predominantly, as seen in the experimentally measured loss function, is the
MIR peak, 0.1eV . 1− 1.5eV. Thus the conjecture is that the saving is predominantly
from small q and midinfrared ω (‘MIR scenario’).
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An advantage of the ‘small-q’ assumption is that it permits us to explain the be-
havior of Tc(n) in multilayer cuprates in terms of the effects of the inter-plane Coulomb
interaction (which must be there!). See AJL, PRL 83, 392 (1999), where it is shown
inter alia that this hypothesis leads to the formula, valid for ‘not too large’ n,

Tc(n)− Tc(1) = const (1− 1/n) (20)

The ideal test of the MIR scenario would he differential transmission EELS experiments,
but these turn out to be technically very difficult.

Thus, we do not have direct measurements of the change in the bare density re-
sponse function χo(q,ω) (hence of the Coulomb energy) through the superconducting
transition. On the other hand, there have been a number of experiments on the change
of the optical properties through the transition. What the optical experiments measure,
in principle, is the complex transverse dielectric constant ε⊥(q, ω), whereas the bare
density response function is simply related (by ε‖(q, ω) ≡ 1 + (e2/εoq

2)χo(qω)) to the
longitudinal dielectric constant ε‖(qω). Now in the limit q → 0, and in the absence of
off-diagonal long-range order, there is a theorem that the quantities ε‖(qω) and ε⊥(qω)
must coincide for any ω (basically in this limit the system “cannot tell” whether the local
electromagnetic current is longitudinal or transverse). In the presence of ODLRO the
equality no longer holds in general (cf. the difference between ε‖(q0) and ε⊥(q0) which
underlies the Meissner effect), but since the difference can be traced to the Anderson-
Bogoliubov mode of the (hypothetical) neutral condensate, one may hope that in the
limit ω/vFq � 1 it vanishes to a good approximation. If this is so, then by inspection
of the optical data one should be able to infer the changes in χo(qω) and thus in the
part of the Coulomb energy which is locked up at the (small relative to kF ) values of q
involved in the optics.

The earlier optical data∗ showed that when the system goes through the supercon-
ductivity transition, a certain amount of the spectral weight (that is, of the optical
conductivity σ(ω) ≡ ω Imε⊥(ω)) is transformed from the frequency region >10,000
cm−1(∼ 1 eV) into the low-frequency region (ω . 600 cm−1). Originally, it was thought
that the transfer was from the band 10,000-25,000 cm−1. However, the more recent and
accurate experiments of Kuzmenko et al.† measured the real and imaginary parts of the
dielectric constant ε⊥(qω) directly by ellipsometry between 0.6 and 2.4 eV, and then
used KK relations to infer it over the remaining regimes.

The results are remarkable (see fig. 3 of their paper): over the whole region 0.6-
2.5 eV the imaginary part of ε(ω) (i.e. the optical conductivity) undergoes no change
within the error bars at the N-S transition. However, the real part ε1(qω) suffers a
noticeable decrease, δε1(qω) < 0 (i.e., since ε1 is negative, at least for the lower part
of this regime, its absolute magnitude is increased); the greatest decrease occurs at the
lower end (0.6 < ω < 1eV ) This result is very striking, for the following reason: As we
have seen, over the whole of the MIR regime, the phase of ε(qω) is very close to 3π/4. If
one now assumes that the change in ε at the N → S transition is small compared to the

∗H. Molegraaf et.al., Science (2002), and earlier references cited therein.
†Phys. Rev. B72, 144503 (2005)
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original N-state value, we can ask: What is the optimal way to decrease −Im(1/ε)? And
the answer is: Keep Imε constant, but decrease Reε! So the data is at least qualitatively
consistent with the idea that an appreciable part of the energy saving takes place in
the MIR regime. Whether this saving is large enough to account for the condensation
energy, and what exactly is the role of the higher-(frequency (say 1 eV < ω < 2.5 eV)
regime, is at the time of writing unclear.


