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Superconducting-state properties I (static + transport)

To avoid simply making a “laundry-list”, we’ll compare as far as possible with what
is expected for a simple weak-coupling (s-wave) BCS picture. Data are for optimal or
near-optimal doping unless otherwise stated.

1. Structural and elastic properties: essentially no change at Tc

In fact, even the in-plane electron density distribution, as measured by x-ray scatter-
ing, appears insensitive to the onset of superconductivity within the accuracy of the
experiment.1

2. Macroscopic electromagnetic properties

The direct determination of meaningful values of Hc1 and Hc2 is complicated by the
extreme type-II nature of the cuprates + hence the extreme importance of fluctuation
effects. (Cf. the graphs of R(T ) as a function of field, Malozemoff in G I, Fig. 7.)
However, a reasonable value of ∂Hc2/∂T YBCO, BSCCO and TBCCO seems to be ∼
0.5T/K for H ‖ c and ∼ 4−5T/K for H ⊥ c, giving values ∼ 50T and 400T respectively
at T = 0 (not currently reachable, except in pulsed experiments). This would correspond
to a ξab(0) of 15−30 Å and ξc(0) ∼ 2−3 Å (smaller than the intermultilayer spacing). For
comparison, a BCS-type estimate ξab(0) ∼ 0.18~vF/kBTc, with m∗/m taken ∼ 4, would
give a ξab(0) ∼ 30Å. Hc1(0) ‖ c is also problematic but is probably in the range of 900G,
giving an (in-plane) λab ∼ 1000Å. As we shall see (lecture 8) direct measurements of λab
are consistent with this estimate. The ab-plane Hc1(0) is smaller, ∼200G. Generally,
one can say that the HTS are (a) strongly type-II and (b) strongly anisotropic, with
ξc � ξab and λc � λab (a natural result, in view of the strongly inhibited transport in
the c-direction).

The EM properties will be discussed in more detail in lecture 9.

3. Specific heat and condensation energy2

As in the normal phase, the electronic specific heat has to be extracted from the raw
data by subtraction of the data for a reference sample. When this is done, for optimal
doping we find a jump at Tc which is somewhat larger than the BCS value (∆cn−s/cn ∼= 2
for YBCO and Tl-2201, ∼1.6 for LSCO). The jump appears to be abrupt for YBCO,
but for Tl and to a lesser extent LSCO has a small precursor on the high-temperature
side ((Tonset − Tmax)/Tmax ∼ 15%). For either underdoping or overdoping, (and also for
doping with Zn) the peak not only shifts with Tc but gets considerably more rounded.

Below Tc the specific heat falls off sharply, and for T & 0.5 Tc does not look qualita-
tively very different from that of a standard BCS superconductor. However, at low T it

1Hu et al., in SNS 1997. The difference in the raw data at 300 K and 11 K is attributed by the
authors to the effect of ionic thermal vibrations.

2Refs.: Loram et al., Physica C 235–240, 134 (1994); Tallon & Loram, Physica C 349, 53 (2001).
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certainly does not go exponentially to zero. Extraction of the “true” electronic specific
heat for T → 0 is difficult because of the large effect of any Schottky anomalies due to
“2-state” impurities etc.3 but the behavior is probably consistent with a T 2 behavior in
this limit.

A very interesting quantity is the condensation energy U(0), which can be measured
by integrating the specific heat (or equivalently entropy) data from 0 to Tc. This has
been done for Y0.8Ca0.2Ba2Cu3O7−δ (which can be overdoped as well as underdoped)
as a function of hole concentration p by Tallon & Loram and is shown in their Fig. 4;
it is striking that it peaks sharply at p = 0.19 (somewhat larger than the value 0.16
corresponding to maximum Tc), at a value of ∼ 33J/mole, which corresponds to a con-
densation energy of 2K per CuO2 unit. A closely similar result has recently been obtained
for Bi-22l2.

4. NMR properties4

As mentioned in lecture 5, the 63Cu(2) and 17O Knight shift in YBCO is independent
of temperature in the (optimally doped) normal state, and the 89Y shift nearly so. The
interpretation of the raw data in the superconducting state is complicated by uncertainty
about how much of the “raw” shift is orbital in origin. In fact, for a field along the c-
axis the Knight shift is temperature-independent below Tc, which at first sight would
argue for spin triplet pairing. However, P. & S. argue convincingly that this is simply a
consequence of the fact that the spin contribution to Kcc is, by a coincidence, zero. The
in-plane components of Ks(T ) show an approximately BCS-like behavior for T & 0.5Tc
(as do all components of the Cu(1) Ks).

The spin-lattice relaxation rate T−1
1 drops precipitously below Tc for both 63Cu(2)

and 17O(2,3) (it also drops for Cu(1) and O(1), but in these cases there was already a
steep temperature-dependence in the normal state so the effect is less dramatic). There
is no evidence of any HS peak.

The low-temperature behavior of Ks and T−1
1 of great interest in the context of

assignation of a pairing state. See Annett et al., in G II.: T−1
1 ∝ T 3.

5. Penetration depth5

In the literature one can find numerous claims to have measured both the absolute value
and the temperature-dependence of the penetration depth for many different cuprates:
the results are very scattered, sometimes differing by factors ∼ 5−10 for a single material
(note that this corresponds to a scatter of 25 − 100 in the more physically meaningful
quantity ρs ∝ λ−2!). Almost certainly, one major reason for this unsatisfactory situation
is that in many of these measurements the raw data is the magnetization or something

3Note that we cannot use the T-dependence of the thermodynamic critical field, inter alia because
the materials are strongly type-II.

4Ref.: Pennington & Slichter, in Ginsberg II.: Tallon et al., in SNS 1997.
5Ref.: Bonn & Hardy, in G V.
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related (e.g. torque), often of a polycrystalline sample, as a function of field and tem-
perature, and the analysis used to convert this raw data into values of λ has often been
dubious. In my opinion the most direct and reliable way of measuring the penetration
depth is via the microwave surface impedance: a second method that is less direct, and
involves some assumptions, but is probably a good deal more reliable than the magneti-
zation method, is muon spin relaxation. To the best of my knowledge results obtained
by these two methods are usually mutually consistent; I will discuss mostly the former,
which is explained in detail by Bonn and Hardy, op. cit., whom I follow for the next few
paragraphs. It should be mentioned that a third method, based on the period of the
Fraunhofer diffraction pattern of a Josephson junction, is also quite accurate but has
not apparently been widely applied to the cuprates.

What is directly measured in a microwave surface impedance experiment is the com-
plex surface impedance Zs(ω) ≡ R(ω) + iXs(ω); for example, in a standard resonant-
cavity geometry these quantities are related to the frequency shift and Q-factor of the
resonance relative to those of the empty cavity by

δω

ω0
≡ ω − ω0

ω0
= −KXs (1)

δ

(
1

Q

)
≡ 1

Q
− 1

Q0
= 2KRs (2)

where K is a calculable factor that depends on the geometry. The above simple formulae
implicitly assume that Zs is isotropic; in general this is not the case for the cuprates, and
the particular eigenvalue(s) of Zs that are measured depend on the sample orientation
etc.

The cuprates are almost without exception strongly in the London limit,6 and thus
can be described by a local complex conductivity σ(ω). The relation between Zs(ω) and
σ(ω) is

Zs(ω) =

(
iµ0ω

σ1(ω)− iσ2(ω)

)1/2

(3)

Most microwave measurements are made at frequencies .100GHz, so that in the
normal phase the condition ωτ � 1 is well fulfilled. In that case, σ2 ∼ (ωτ)σ1 � σ1, so
we can write approximately

Rs = Xs =

(
µ0ω

2σ1

)1/2

(4)

and since σ1 is usually known from independent measurements, this allows the calibration
of the constant K in the above formulae. In the superconducting state we have a δ-
function in σ1 at ω = 0, which is not of interest in itself but gives rise to the Meissner
term in σ2, namely

σ2(ω, T ) = 1/µ0ωλ
2(T ) (5)

6However, the low-temperature T -dependence may be sensitive to “Pippard” effects, since for direc-
tions close to the gap nodes the “effective” ξ can be & λ.
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It is conventional to subtract this out and write the full complex σ in the form

σ(ω, T ) = σ∗(ω, T )− i/µ0ωλ
2(T ) (6)

so that σ∗ represents all the “non-Meissner” contributions, in particular the dissipative
contribution, at finite T , of the normal quasiparticles. Usually σ∗ is nearly real for
ωτ � 1 and moreover is � the reactive (λ2) term (except close to Tc). In this limit we
have the simple relation

Xs = µ0ωλ(T ) (7)

so that the frequency shift δω is directly proportional to λ(T ). Note that none of the
above relies in any way on a BCS-type theory being applicable. It is clear that (since
the formula for Xs cannot be extrapolated to Tc) it is easier to measure changes in λ(T )
than to measure the absolute value e.g. of λ(0) (which is actually easier to get from
µSR).

Results: these are most naturally plotted in terms of the quantity λ2(0)/λ2(T ) =
ρs(T )/ρ. Of course, ρs is a tensor and hence one should distinguish between λab (λ‖)
and λc (λ⊥), and also, in the case of orthorhombic materials such as YBCO, between
λa and λb: note that the subscripts refer to the direction of the induced current (not
the direction of penetration!). Results are quoted for optimal doping unless otherwise
stated.
ab-plane: Generally, the temperature-dependence

ρs

ρ

TcT

1
of ρs/ρ is roughly as shown, i.e. much more T -
dependent at low temperature than BCS, although
in the case of NCCO it is almost BCS-like. In
the region close to Tc the behavior is probably
not linear but better fitted to ρs/ρ ∼ (Tc − T )2/3

which is the behavior expected7 for a so-called 3D
XY model (single complex order parameter). At
low temperatures the behavior is very sensitive to
the doping and impurity level; in the purest crys-
tals the evidence is that ∆λ(T ) ≡ λ(T ) − λ(0)
(∼= ρn(T )) is linear in temperature, but a quite small concentration (−0.3%) of Zn or
(to a lesser extent) Ni impurities is sufficient to convert the temperature-dependence to
quadratic for a considerable range of T (. 0.2 Tc).

The temperature-dependence of λab(T ) does not appear to be particularly sensitive to
doping, although the zero-temperature value λab(0) itself does depend on it (cf. below).
The absolute value of λab(0) is subject to much more uncertainty than the temperature-
dependence. The following values are quoted by Bonn & Hardy, op. cit.: some are from
microwave measurements, others from µSR.

YBCO, optimally doped:

{
λa(0) ∼= 1600Å
λb(0) ∼= 1030Å

YBCO, underdoped (x = 0.6)

{
λa(0) ∼= 2100Å
λb(0) ∼= 1600Å

7cf. the behavior of ρs/ρ in liquid 4He near the λ-point. The exponent 2/3 is not exact according to
RG calculations, but is 0.668. . .
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BSCCO-2212 (optimal) λab(0) ∼= 2100Å

Tl-2201, overdoped (Tc ∼= 78K) λab(0) ∼= 1650Å

LSCO (optimal) λab(0) ∼= 4000Å

Values for many other materials are quoted in the literature, but the techniques used
are often indirect.

It is a very interesting question whether the ab-plane penetration depth data are
compatible with the hypothesis of universal behavior in the CuO2 planes at the same
level of doping. Recall that λ−2

ab measures the 3D superfluid density; thus if the hypothesis
of universality is correct, one would expect the relation

λ2
ab(0)/ d̄ = const. (8)

to hold, where d̄ is the average distance between CuO2 planes. While the microwave
data alone are hardly sufficient to test this hypothesis, we can try to compare the values
inferred from µSR8; the ratios may be hoped to be given by this technique more reliably
than absolute values. The data of Uemura et al. (op. cit). appear compatible with the
hypothesis as regards the higher-Tc materials, i.e. the ratio is the same9 within the error
bars for optimally doped Tl-2223 and (near)-optimally doped YBCO, and if we take the
a-values for the latter from the µ-wave data the constant comes out to be near 5× 105

Å. For LSCO the number is quite different, about a factor of 2 larger.
The data of Uemura et al. were actually presented as evidence of an intriguing corre-

lation between λ−2
ab (0) and the transition temperature Tc; for doping below optimal the

relationship, for the nine different systems measured, appears to be rather convincingly
linear. However, their Fig. 2 also shows that the increase of λ−2

ab (0) with doping persists
beyond the maximum in Tc.

One may ask how well the data fit a näıve picture, in which the superfluid density
per plane is simply expressed as nm2/m∗, where n is the number of carriers per unit
area and m∗ (∼ 4m) the effective mass inferred from the specific heat measurements,
i.e. the quantity λ−2

ab (0) = n3De
2µ0/m

∗. For optimally doped YBCO, n3D
∼= peff × 1022

cm−3, where peff is the effective number of carriers per CuO2 unit (see below), and the
quantity λ−2

ab (0) is therefore approximately 1.5 peff(m/m∗) · 10−6·Å−2. We can therefore

fit the a-axis data (λ−2
a (0) ∼= 0.4 × 10−6Å

−2
) with an m/m∗ ratio of 0.25 as indicated

by the normal-state specific heat, provided we take peff at optimal doping to be not p
but rather (1 + p), i.e. all the holes in the Cu 3d9 band and not just the excess ones
over the parent compound contribute. Note that to get the b-axis value right (assuming
the behavior of the planes themselves is nearly isotropic) we need to assume that the
chains contribute 3/2 as much as both planes! That this may indeed be so is indicated

8Uemura et al., PRL 62, 2317 (1989).
9Actually, the values of d̄ and λ−2

ab (0) separately are closely similar for the two materials, but this is
not particularly significant since the multi-layering structure is different.
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by the even smaller λb for 1248 (∼800 Å) (and by the anisotropy of the normal-state
resistivity).

Now let’s turn to the c-axis penetration depth λc(T). In addition to the methods
(microwave, µSR, powder magnetization . . . ) used for λab, there is now the possibility
of measuring this, at least within ∼10–20% accuracy, by STM studies of the structure
of vortices (see lecture 13; the reason this technique does not work for λab is insufficient
resolution).

In general, measured values of λc(0) are much larger than those of λab(0), ranging
from ∼ 11, 000Å for slightly overdoped YBCO to the enormous value of ∼ 100µ (0.1mm!)
for Bi-2212. Not surprisingly, as YBCO is underdoped λc increases much faster than λab;
this presumably reflects the fact that the chain O’s, which are the ones removed when
the sample is underdoped, play an important role in the contrast between neighboring
bilayers.

Although the general shape of λc(T ) on a scale T ∼ Tc is qualitatively similar to that
of λab(T ), the first corrections to the T = 0 value are much smaller, and in fact are often
approximated by a T 5 form. (However, they do not seem well fitted by an exponential).

An obvious question, given the very weak contact between neighboring multilayers
in most cuprates, is how well the value of λc(0) is reproduced by modelling each inter-
multilayer link as an independent Josephson junction and applying to it the standard
formulae, in particular the Ambegaokar-Baratoff relation

Ic(0)RN = π∆(0)/2e (9)

Since the c-axis resistivity ρc is RN/dint (dint = mean spacing between multilayers) and

in a simple Josephson model ρ
(c)
s (0) ∼ λ−2

c (0) is proportional to Ic(0), the predicted
relation is

λ−2
c (0)ρc dint/∆(0) ∼ const. (10)

Since ρc is often strongly temperature-dependent, a quantitative test of this predic-
tion is somewhat ambiguous. However, Basov et al.10 (Phys. Rev. B (1994)) have
shown that the values of λ−2

c ρc(Tc) for 8 different systems measured fit the prediction
within a factor ∼2–3.

5. ac conductivity (ω . kBTc/~)

Let’s first briefly recap the principal features of the low-frequency (let’s say ω . 10kBTc/~)
conductivity in a classic (BCS) superconductor. The most general quantity character-
izing the EM response is the complex dielectric constant ε(ω) ≡ ε(ω) + iε2(ω), but one
often concentrates on the (real part of the) conductivity σ1(ω), defined by

σ1(ω) = ωε0ε2(ω) (11)

This quantity obeys the f-sum rule (in the limit of q → 0, for arbitrary polarization of
E relative to q) [SI units] ∫ ∞

0
σ1(ω)dω = πε0ω

2
p/2 (12)

10Ref: Tanner and Timusk, in G. III. section V (ab-plane): Cooper & Gray, in G. IV (c-axis)
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where ωp ≡ (ne2/mε0)1/2 is the plasma frequency (n = total no. of electrons: in practice,
one often replaces this by an effective “number of conduction electrons” and restricts
the integral to frequencies low enough that hopefully the contribution of the “core”
electrons is excluded). In the normal phase, the sum rule is typically satisfied by a
spectrum of σ1(ω) which extends over a range ∼ 1/τ where τ is some relaxation time
(usually � ω−1

p ): e.g. for a simple Drude model we have

σ1(ω) =
ε0ω

2
pτ

1 + ω2τ2
(13)

which evidently satisfies eqn. (12).
In the superconducting state the Meissner effect corresponds to a δ-function in σ1 at

ω → 0 (dJ/dt ∝ E!) with a weight of (π/2)(ne2/m)(ρs/ρ) ≡ (πε0ω
2
p/2)× ρs/ρ. We see

that at T = 0 for a very clean superconductor (ρs = ρ) this exhausts the sum rule, so in
this case σ1(ω) is zero at all nonzero frequencies (but, actually, this would also be true in
the normal state!) In practice, ρs is always slightly different from ρ even at T = 0. Now
we further know that in a BCS superconductor (uniform gap ∆) no real excitation can
take place at T = 0 until ω > 2∆. Thus, any spectral weight missing from the Meissner
δ-function must be pushed up to frequencies ≥ 2∆. For a clean superconductor (l� ξ0,
or equivalently τ∆� 1) this missing weight is a small fraction (O(ξ0/l)), but for a dirty
one (l � ξ0 or τ∆ � 1) it is most of it. However, in this case the normal-state Drude
weight lies mainly above 2∆ anyway, so the fractional change in σ1(ω) for ω ≥ 2∆ is
not large. See Tanner & Timusk, op. cit., Fig. 53 (reproduced approximately).

At finite temperatures, there

σ1(ω)

τ · ∆ = 0.5 τ · ∆ = 5

2∆ ω 2∆ ω

is a contribution to σ1(ω) even
for ω < 2∆ from scattering of
the normal component. If we
neglect subtleties connected with
the coherence factors, this is sim-
ply proportional to ρn/ρ and its
shape is still essentially Drude
with the same value of τ as in
the N phase (since in a typi-
cal BCS superconductor by the
time T . Tc, τ is usually due
mainly to impurity scattering).

In the cuprates the behavior of σ1(ω) in the superconducting state is rather different:
consider first the ab-plane σ1(ω) at T � Tc, as shown for six different materials in
Fig. 56 of Tanner et al., op. cit. In all cases, σ1(ω) is appreciable at frequencies well
below 3.5 kBTc (= 2∆ in BCS theory: note that this is 220 cm−1 for Tc = 90 K),
although it is smaller than in the normal state (see Fig. 27) and does show signs of
dropping towards zero at the lowest frequency (note that the “data” are obtained by
KK transformation of the reflectance). Equally striking is the fact that if we sit at a
fixed frequency < 2∆(0) and lower the temperature through Tc, σ1(ω) actually increases
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initially before eventually dropping well below the N-state value.11 This suggests strongly
that the effective scattering rate which enters the (pseudo-) Drude formula is primarily
due to electrons, which are gapped below Tc.

The question of whether one can ever actually “see” the superconducting gap in the
optical conductivity at all is a vexed one, see Tanner et al., op. cit.

Turning to the c-axis conductivity, this typically decreases, in the superconducting
state, typically in the frequency region below ∼150 cm−1 for optimally doped samples
but up to ∼500 cm−1 in underdoped ones. A peculiar characteristic of the c-axis elec-

trodynamics of the cuprates is that the plasma frequency (which is proportional to I
1/2
c )

is so low that it may actually be < 2∆; thus, while the “plasmon” is strongly damped
and hence invisible in the normal state, in the superconducting state it may sharpen
up enough to be seen. Indeed, evidence for such c-axis plasmons from the infrared
reflectivity has been reported for LSCO and BSCCO.

6. Thermal conductivity and Nernst coefficient12

In a typical metal, the heat is carried both by electrons and by phonons. To estimate
their relative contribution to the thermal conductivity K, it is adequate to use the
“classical” formula

K ∼ 1

3
cv v l (14)

where cv = specific heat of carriers, v = mean velocity, l = mean free path. Since for T �
θ, and ∼ 1 free electron per unit cell we have cel

v ∼ nkB(T/TF), cph
v ∼ nkB(T/θD)3, vel =

vF, vph = cs, and cs/vF ∼ θD/TF, the ratio is of order

Kph/Kel ∼ (T/θD)2(lph/lel). (15)

For conventional superconductors this ratio is usually� 1 by the time Tc is reached, but
for the cuprates, which simultaneously have much higher Tc’s, lower electron densities
and shorter mean free paths, the phonon contribution may be dominant in the N phase,
or at least comparable to the electronic one.13

Since in a conventional superconductor the heat transport for T . Tc is overwhelm-
ingly electronic (carried by the normal component), and the electronic mean free path is
usually predominantly due to impurity scattering, we expect that below Tc K(T ) would
drop off approximately as ρn(T )/ρ, and this seems consistent with most of the data.

In the superconducting cuprates, almost universally, K(T ) rises below Tc, peaking
in the cleanest samples at a value ∼ 2K(Tc) at a temperature ∼ 0.5Tc, thereafter falling
to zero as T → 0. In many cases the low-temperature K(T ) appears to be linear in
T , though in BSCCO it looks like T 2 without any visible T region. The rise below
Tc indicates a decrease in scattering mechanisms, but does not by itself distinguish
between electron and phonon contributions. However, the fact that in conventional

11Bonn & Hardy, PRL (single-crystal YBCO).
12Ref.: Uher, in G III.
13The ratio may be expected to vary from material to material because of the different phonon spectra.
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YBCO crystals Ka and Kb are different, with a ratio close to the normal-state ratio of
R−1
a and R−1

b , indicates that at least in this material the mechanism may be primarily
electronic.

The c-axis thermal conductivity has not been much studied but appears to drop off
smoothly below Tc (Uher, Figs. 20 and 21). Presumably this is almost entirely due
to phonons, and the scattering mechanism seems likely to be primarily by impurities
although this is not completely clear.

Ong and co-workers have reported a truly enormous increase (by a factor ∼ 103) in
the Nernst coefficient, that is the off-diagonal (Kxy) element of the thermal conductivity
tensor in a magnetic field, of pure crystal YBCO. As the fields in question were � Hc1

this may be at least partly a “vortex” effect; at any rate, it is currently a major puzzle.


