Announcements

Concept Inventory Pre-test: starts today!

Got i-Clicker?

MATLAB clinic will be held in DCL L440 (first session at 5pm today)

Remember to go through the course websiteOffice hours are posted (Schedule)

Recommended reading: Hibbeler chapters 1-2

□ Upcoming deadlines:

- Friday (9/1)
 - PrairieLearn HW0

From Last Time

How do we quantify these rules? (What are the rules? (Physics) How do we apply the rules? (vector operations)

Newton's laws of motion

First law:

Particle at rest (or moving in a straight line with constant velocity) stays that way unless another force comes in. Second law: a particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration \mathbf{a} that is proportional to the particle mass m: for statics

$$F = ma^{\prime}$$

a

Third law: the mutual forces of action and reaction between two particles are <u>equal</u>, <u>opposite</u> and <u>collinear</u>.

Newton's law of gravitational attraction

The mutual **force F of gravitation** between two particles of mass m_1 and m_2 is given by:

G is the universal constant of gravitation (small number)

r is the distance between the two particles

 $F = G \frac{m_1 m_2}{r^2}$

m is mass

Weight is the force exerted by the earth on a particle at the earth's surface:

$$F = G \frac{mM_e}{V_e^2} = m \left(G \frac{M_e}{V_e^2}\right)$$

 M_e is the mass of the earth r_e is the distance between the earth's center and the particle near the surface (at sea level & latitude 45)^{the ast}

g is the acceleration due to the gravity L2 - Gen Principles & Force Vectors

Figure: 01_PH003 The astronaut's weight is diminished, since she is far removed from the gravitational field of the earth.

Copyright ©2013 Pearson Education, publishing as Prentice Ha

Units

Name	Length	Time	Mass	Force
International	meter	second	kilogram	newton*
SI	m	S	kg	$\left(\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2}\right)$
U.S. Customary	foot	second	slug*	pound
FF5	ft	S	$\left(\frac{lb \cdot s^2}{ft}\right)$	lb
*Derived unit.				
	Copyright ©	2013 Pearson Education, publishin	g as Prentice Hall	

 $G = 66.73 \times 10^{-12} \frac{m^3}{kg \cdot s^2}$ $g = 9.81 \frac{m}{s^2}$ $g = 32.2 \frac{ft}{s^2}$ L2 - Gen Principles & Force Vectors

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
 - Actual price: \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons! He landed the plane safely without power on an emergency airstrip.

Mars climate orbiter -- \$327.6 million

Numerical Calculations **Dimensional Homogeneity**

Equations *must* be dimensionally homogeneous, i.e., each term must be expressed in the same units.

Work problems in the units given unless otherwise instructed! Example: Find the units of *G* (the universal constant of gravitation).

=) units of $G = \frac{m^*}{kg \cdot s^2}$ - Same as slide 6

Numerical Calculations Significant figures

The number of significant figures contained in any number determines the accuracy of the number. Use 3 or > significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

Force vectors

A force—the action of one body on another—can be treated as a vector, since forces obey all the rules that vectors do.

Scalars and vectors

	Scalar	Vector	
Examples	Mass, Volume, Time	Force, Velocity	
Characteristics	It has a magnitude	It has a magnitude and direction	
Special notation used in TAM 210/211	None	Bold font or symbols ("→") Ex:	

Multiplication or division of a vector by a scalar

11

 $F \neq ab$ F = abc

 $\boldsymbol{B} = \alpha \boldsymbol{A}$ Ā (magnitude doubles, (reverse direction keeps direction the same) only) L2 - Gen Principles & Force Vectors

Vector addition

All vector quantities obey the parallelogram law of addition $\ R=A+B$

Associative law: A + (B + C) = (A + B) + CL2 - Gen Principles & Force Vectors **Vector subtraction:**

$$oldsymbol{R}=oldsymbol{A}-oldsymbol{B}=oldsymbol{A}+(-oldsymbol{B})$$

 $(-oldsymbol{B})$ has the same magnitude as $oldsymbol{B}$ but is in opposite direction.

Scalar/Vector multiplication:

$$\alpha(\boldsymbol{A} + \boldsymbol{B}) = \alpha \, \boldsymbol{A} + \alpha \, \boldsymbol{B}$$

$$(\alpha + \beta)\mathbf{A} = \alpha \,\mathbf{A} + \beta \,\mathbf{A}$$

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the *x*, *y*, *z* axes, with unit vectors \hat{i} , \hat{j} , \hat{k} in these directions.

Note that we use the special notation " n " to identify *basis vectors* (instead of the " \rightarrow " notation)

Right-hand Rule

Sort the following coordinate systems into Cartesian and non-Cartesian.

Label the missing coordinate axes in Cartesian coordinate system.

•

Magnitude of Cartesian vectors

$$A = |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

$$A' = \int A_x^2 + A_y^2$$
$$A = \int A'^2 + A_z^2$$
$$= \int (A_x^2 + A_y^2) + A_z^2$$

