Announcements

\square Concept Inventory Pre-test: starts today!
\square Got i-Clicker?
\square MATLAB clinic will be held in DCL L440
(first session at 5pm today)
\square Remember to go through the course website
\square Office hours are posted (Schedule)
\square Recommended reading: Hibbeler chapters 1-2
\square Upcoming deadlines:

- Friday (9/1)
- PrairieLearn HW0

From Last Time

Newton's laws of motion

First law:

Particle at rest (or moving in a straight line with constant velocity) stays that way unless another force comes in.

Second law: a particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration a that is proportional to the particle

Third law: the mutual forces of action and reaction between two particles are
\qquad ,
\qquad _.

state of rest or motion of bodies that are subjected to the action of forces

Which forces?

Newton's law of gravitational attraction
The mutual force \mathbf{F} of gravitation between two particles of mass m_{1} and m_{2} is given by:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

G is the universal constant of gravitation (small number)
r is the distance between the two particles

m is mass
Weight is the force exerted by the earth on a particle at the earth's surface:

$$
F=G \frac{m M_{l}}{r_{l}^{2}}=m\left(G \frac{M_{l}}{r_{l}^{2}}\right)
$$

r_{e} is the distance between the garth's center and the particle

Units

TABLE 1-1 Systems of Units

Name	Length	Time	Mass	Force
International System of Units SI	meter	second	kilogram	newton*
	m	s	kg	$\begin{gathered} \mathrm{N} \\ \left(\frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right) \end{gathered}$
U.S. Customary FPS	foot	second	slug*	pound
	ft	S	$\left(\frac{\mathrm{lb} \cdot \mathrm{s}^{2}}{\mathrm{ft}}\right)$	lb

*Derived unit.

Copyright ©2013 Pearson Education, publishing as Prentice Hall

L2 - Gen Principles \& Force Vectors

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
- Actual price: $\$ 50,000$
- Paid while trading on the market: $\$ 800,000$
- In Canada, a plane ran out of fuel because the pilot mistook liters for gallons! He landed the plane safely without power on
 an emergency airstrip.

Mars climate orbiter -- $\$ 327.6$ million

Numerical Calculations
Dimensional Homogeneity
Equations must be dimensionally homogeneous, i.e., each term must be expressed in the same units.
Work problems in the units given unless otherwise instructed!
Example: Find the units of G (the universal constant of gravitation).

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{r^{2}} \\
& {[N]=[?] \frac{[\mathrm{kg}][\mathrm{kg}]}{[\mathrm{m}]^{2}} } \\
\Rightarrow & \frac{[\mathrm{~kg}][\mathrm{m}]}{[\mathrm{s}]^{2}}=[\eta] \frac{[\mathrm{kg}][\mathrm{kg}]}{[\mathrm{m}]^{2}} \\
\Rightarrow & {[?]=\frac{[\mathrm{lg}][\mathrm{m}][\mathrm{m}]^{2}}{[\mathrm{l}]^{2}[\mathrm{~kg}][\mathrm{kg}]} }
\end{aligned} \quad \Rightarrow \text { units of } G=\frac{\mathrm{m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}} \mathrm{v} \quad \text {. Same as slide } 6
$$

Numerical Calculations
Significant figures
The number of significant figures contained in any number determines the accuracy of the number. Use 3 or $>$ significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, in order to maintain precision.

- Prairie Learn accepts 1\% tolerance.

Eg. IF $F=2.18 \mathrm{~N}, 2.18 \pm 0.0218 \mathrm{~N}$ range would be accepted, which requires at least 3 sig. fig.

Force vectors

A force- the action of one body on another - can be treated as a vector, since forces obey all the rules that vectors do.

[^0]
Scalars and vectors

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special notation used in TAM 210/211	None	Bold font or symbols (" \rightarrow ") Ex:

$$
\vec{F} \neq a b \quad \vec{F}=a b \vec{C}
$$

Multiplication or division of a vector by a scalar
$\boldsymbol{B}=\alpha \boldsymbol{A}$

I magnitude doubles,
11 L2 - Gen Principles \& Force Vectors kans direction the same)

(reverse direction only)

Vector addition

All vector quantities obey the parallelogram law of addition $\boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}$

Parallelogram law

Commutative law: $\quad \boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$

$\mathbf{R}=\mathbf{A}+\mathbf{B}$
Triangle rule

$\mathbf{R}=\mathbf{B}+\mathbf{A}$
Triangle rule

Associative law: $\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})=(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}$
L2 - Gen Principles \& Force Vectors

Vector subtraction:

$$
\boldsymbol{R}=\boldsymbol{A}-\boldsymbol{B}=\boldsymbol{A}+(-\boldsymbol{B})
$$

$(-\boldsymbol{B})$ has the same magnitude as \boldsymbol{B} but is in opposite direction.

Scalar/Vector multiplication:

$$
\begin{aligned}
& \alpha(\boldsymbol{A}+\boldsymbol{B})=\alpha \boldsymbol{A}+\alpha \boldsymbol{B} \\
& (\alpha+\beta) \boldsymbol{A}=\alpha \boldsymbol{A}+\beta \boldsymbol{A}
\end{aligned}
$$

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes, with unit vectors $\hat{i}, \hat{j}, \hat{k}$ in these directions.

Note that we use the special notation " \wedge " to identify basis vectors (instead of the " \rightarrow " notation)
$(\hat{i}, \hat{j}, \hat{k})$ or $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$

Rectangular components of a vector

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{A}_{x}+\boldsymbol{A}_{y}+\boldsymbol{A}_{z} \\
& \vec{A}_{x}=A_{x} \hat{\imath} \\
& \vec{A}_{y}=A_{y} \hat{\jmath} \quad A_{x} i+A_{y} j+A_{z}=A_{z} \hat{k}
\end{aligned}
$$

Right-hand Rule

Sort the following coordinate systems into Cartesian and non-Cartesian.

Label the missing coordinate axes in Cartesian coordinate system.

Magnitude of Cartesian vectors

$$
A=|\boldsymbol{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

$$
\begin{aligned}
A^{\prime} & =\sqrt{A_{x}^{2}+A_{y}^{2}} \\
A & =\sqrt{A^{\prime 2}+A_{t}^{2}} \\
& =\sqrt{\left(A_{x}^{2}+A_{y}^{2}\right)+A_{z}^{2}}
\end{aligned}
$$

Direction of Cartesian vectors

Expressing the direction using a unit vector:

$$
\begin{aligned}
& \text { Direction cosines are the } \\
& \text { components of the unit vector: }
\end{aligned}
$$

$$
\begin{aligned}
\begin{aligned}
& u_{A}=\frac{\boldsymbol{A}}{A} \\
&=\frac{A_{x}}{A} \boldsymbol{i}+\frac{A_{y}}{A} \boldsymbol{j}+\frac{A_{z}}{A} \boldsymbol{k} \\
& u_{A}=\left(\frac{\boldsymbol{A}_{x}}{\boldsymbol{A}}\right)^{2}+\left(\frac{\boldsymbol{A}_{y}}{\boldsymbol{A}}\right)^{2}+\left(\frac{\boldsymbol{A}_{\mathbf{t}}}{\boldsymbol{A}}\right)^{2} \\
& \cos (\alpha)=\frac{A_{x}}{A} \\
& \cos (\beta)=\frac{A_{y}}{A} \\
& \cos (\gamma)=\frac{A_{z}}{A}
\end{aligned} \\
(\text { magnitude }=1)
\end{aligned}
$$

[^0]: L2 - Gen Principles \& Force Vectors

