Announcements

□ MATLAB Clinics

- Concept Inventory Pre-test
- □ Office Hours start today (no OH on Labor Day)

Students in Monday discussions may choose a different section to attend next week (9/3-7)

□ Upcoming deadlines:

- Friday (8/31) Today!
 - PrairieLearn HW0
- Next Thursday (9/6)
 - PrairieLearn HW1
- Next Friday (9/7)
 - Written Assignment 1

National College Color Day

Recap

- Pay attention to units!
- Equations must be dimensionally homogenous
- 1% accuracy
- Scalar defined by magnitude (negative/positive)
- Vector defined by magnitude and direction

force needs direction $\vec{F} = F\hat{u}$

Addition of Cartesian vectors

$$\boldsymbol{R} = \boldsymbol{A} + \boldsymbol{B} = (A_x + B_x) \, \boldsymbol{i} + (A_y + B_y) \, \boldsymbol{j} + (A_z + B_z) \, \boldsymbol{k}$$

Example $F_2 = 400 \text{ N}$ 60° 45° 120°/ N. 25° HARMMAN AND THE REAL PROPERTY OF THE PARTY O 35° $F_1 = 250 \text{ N}$

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.

1.2 Express force F_2 in Cartesian vector form.

$$F_{2} = \{f_{2} \mid v_{2} \}$$

$$= \{F_{2} \mid (\omega \le 120')_{1} + F_{2} (\omega \le 45'')_{1} + F_{2} (\omega \le 60')_{1} + F_{2} (\omega \ge 60')_{1} + F_{2} (\omega \le 60')_{1} + F_{2} (\omega \ge 60')_{1} + F_{2} (\omega$$

Example

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.

1. Express forces F_1 and F_2 in Cartesian vector form. 2. Find force F_R in Cartesian vector form.

Example

F_R.

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.

1. Express forces F_1 and F_2 in Cartesian vector form. 2. Find force F_R in Cartesian vector form.

3. Determine the magnitude and direction cosines of

 $F_{R} = \int F_{EX}^{2} + F_{FY}^{2} + F_{FZ}^{2}$ $\alpha = \cos^{2}(F_{RY}/F_{R})$ $\beta = \cos^{2}(F_{RY}/F_{R})$ $\delta = \cos^{2}(F_{RZ}/F_{R})$

Position vectors

A position vector \boldsymbol{r} is defined as a fixed vector which locates a point in space relative to another point. For example,

r = x i + y j + z kexpresses the position of point P(x,y,z) with respect to the origin O.

The position vector \boldsymbol{r} of point \boldsymbol{B} with respect to point \boldsymbol{A} is obtained from

$$\left(\frac{1}{Y} = \overline{Y}_{B} - \overline{Y}_{A}\right) (and - boginning)$$

$$\overline{Y} = (\overline{Y}_{B} - \overline{Y}_{A}) (1 + (\overline{Y}_{B} - \overline{Y}_{A})) (1 + (\overline{z}_{B} - \overline{z}_{A})) ($$

Thus, the (i, j, k) components of the positon vector r may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

Dot (or scalar) product

The dot product of vectors **A** and **B** is defined as such

Cartesian vector formulation:

$$A \cdot B = (A_{X} B_{X}) + (A_{Y} B_{Y}) + (A_{Z} B_{Z})$$

AA	
A	B
2	

Projections

The scalar component A_{\parallel} of a vector **A** along (parallel to) a line with unit vector **u** is given by:

