Announcements

\square MATLAB Clinics
\square Concept Inventory Pre-test
\square Office Hours start today (no OH on Labor Day)
\square Students in Monday discussions may choose a different section to attend next week (9/3-7)
\square Upcoming deadlines:

- Friday (8/31) - Today!
- PrairieLearn HW0
- Next Thursday (9/6)
- PrairieLearn HW1
- Next Friday (9/7)
- Written Assignment 1

National College Color Day

Recap

- Pay attention to units!
- Equations must be dimensionally homogenous
- 1\% accuracy
- Scalar - defined by magnitude (negative/positive)
- Vector - defined by magnitude and direction
force needs direction

$$
\vec{F}=F \hat{\hat{K}}
$$

Static

Example

$$
\begin{aligned}
& \vec{F}_{2}=F_{2} \hat{u}_{2}, \quad F_{2}=20 \mathrm{~N} \\
& \hat{u}_{2}=-\sin 20^{\circ} \imath-\cos 20^{\circ} \hat{\jmath} \quad \rightarrow \stackrel{\rightharpoonup}{F_{1}}=\left[30\left(\frac{-4}{5}\right) \hat{\imath}+30\left(\frac{3}{5}\right) \hat{\jmath}\right] \mathrm{N} \\
& \Rightarrow \vec{F}_{2}=-20 N \sin 20^{\circ} \hat{\imath}-20 \mathrm{~N} \cos 20^{\circ} \hat{\jmath}
\end{aligned}
$$

Express force vector \mathbf{F}_{1} using the Cartesian vector form.

Vector form : $\begin{aligned} & \vec{F}_{1}=F_{1} \hat{u}_{1} \\ & \text { mag. } \\ & \text { dir. }\end{aligned}$
Unit vector: $\hat{u}_{1}=-\frac{4}{5} \hat{\imath}+\frac{3}{5} \hat{\jmath}$
Force magnitude: $F_{1}=30 \mathrm{~N}$

Addition of Cartesian vectors

$$
\boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}=\left(A_{x}+B_{x}\right) \boldsymbol{i}+\left(A_{y}+B_{y}\right) \boldsymbol{j}+\left(A_{z}+B_{z}\right) \boldsymbol{k}
$$

$$
\vec{A}=A x \hat{\imath}+A_{y} \hat{\jmath} \quad \vec{B}=B_{x} \hat{\imath}+B y \hat{\jmath}
$$

Example

Example

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.
1.2 Express force \mathbf{F}_{2} in Cartesian vector form.

$$
\begin{aligned}
\vec{F}_{2}= & F_{2} \hat{u}_{2} \\
= & {\left[F_{2}\left(\cos 120^{\circ}\right)^{+}+F_{2}\left(\cos 45^{\circ}\right) \hat{\jmath}\right.} \\
& \left.+F_{2}\left(\cos 60^{\circ}\right) \hat{k}\right] \mathrm{N} \\
= & 400\left(-\frac{1}{2}\right) \hat{\imath}+400\left(\frac{\sqrt{2}}{2}\right) \hat{\jmath} \\
& +400\left(\frac{1}{2}\right) \hat{k} \mathrm{~N} \\
\vec{F}_{2 x}= & -200 \hat{\imath}+20 F_{2 y} \sqrt{2} \hat{\jmath}-200 \hat{k} \mathrm{~N}
\end{aligned}
$$

Example

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.

1. Express forces \mathbf{F}_{1} and \mathbf{F}_{2} in Cartesian vector form.
2. Find force $\mathbf{F}_{\mathbf{R}}$ in Cartesian vector form.

Example

The bracket is subjected to the two forces on the ropes. Determine the magnitude and direction cosines of the resultant force vector.

1. Express forces \mathbf{F}_{1} and \mathbf{F}_{2} in Cartesian vector form.
2. Find force $\mathbf{F}_{\mathbf{R}}$ in Cartesian vector form.
3. Determine the magnitude and direction cosines of F_{R}.

$$
\begin{aligned}
& F_{R}=\sqrt{F_{k x}^{2}+F_{k y}^{2}+F_{k z}^{2}} \\
& \alpha=\cos ^{-1}\left(F_{R x} / F_{R}\right) \\
& \beta=\cos ^{-1}\left(F_{R y} / F_{R}\right) \\
& \gamma=\cos ^{-1}\left(F_{R z} / F_{R}\right)
\end{aligned}
$$

Position vectors
A position vector \boldsymbol{r} is defined as a fixed vector which locates a point in space relative to another point. For example,

$$
\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}
$$

expresses the position of point $P(x, y, z)$ with respect to the origin O.

The position vector \boldsymbol{r} of point \boldsymbol{B} with respect to point \boldsymbol{A} is obtained from

$$
\begin{aligned}
& \vec{\gamma}=\vec{r}_{B}-\vec{\gamma}_{A} \quad \text { (end - beginning) } \\
& \vec{\gamma}=\left(x_{B}-x_{A}\right) \hat{\imath}+\left(y_{B}-y_{A}\right) \hat{\jmath}+\left(z_{B}-z_{A}\right) \hat{k}
\end{aligned}
$$

Thus, the $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ components of the positon vector \boldsymbol{r} may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

The force vector \boldsymbol{F} acting a long the rope can be
$(0,0,30) \nmid$
flefined by the unit vector \boldsymbol{u} (defined the direction of the rope) and the magnitude of the force. magnitude $\boldsymbol{F}=F \boldsymbol{u} \quad(\vec{F} \neq F \vec{\gamma})$ ben The unit vector \boldsymbol{u} is specified by the position vector wong

$$
\hat{u}=\frac{\vec{r}}{r}=\frac{\vec{B}-\vec{A}}{|\vec{B}-\vec{A}|}
$$

The man pulls on the cord with a force of 70 lb . Represent the force F as a Cartesian vector.

$$
\begin{aligned}
\vec{r} & =(12-0) \hat{\imath}+(-8-0) \hat{\jmath}+(6-30) \hat{k} f t \\
& =12 \hat{\imath}-8 \hat{\jmath}-24 \hat{k} \mathrm{ft} \\
r & =\sqrt{12^{2}+\delta^{2}+24^{2}} f t=28 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \text { What are the units? } \\
& \begin{array}{l}
\vec{F}=F(\hat{u}) \\
[N]=[N](1))
\end{array}
\end{aligned}
$$

(15) $[N]=[N]$

Dot (or scalar) product
The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

$$
\vec{A} \cdot \vec{B}=A B \cos \theta \hookleftarrow \text { scalar }
$$

Cartesian vector formulation:

$$
A \cdot B=\left(A_{x} B_{x}\right)+\left(A_{y} B_{y}\right)+\left(A_{z} B_{z}\right)
$$

Projections
The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

$$
A_{\|}=A \cos \theta A_{\perp}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{\|}=A_{11} \hat{u}_{11}=A \cos \theta \hat{u}=\frac{(\vec{A} \cdot \hat{u})}{\uparrow} \hat{u} \\
& \left(A_{\perp}=\vec{A}-\vec{A}_{11}\right) \quad A \cdot 1 \cos \theta=\vec{A} \cdot \hat{u} \\
& \left.\vec{A}_{11}+\vec{A}_{\perp}=\vec{A} \quad\right\}_{\text {rearrange }}
\end{aligned}
$$

