### Announcements

- Concept Inventory/"Hidden Figures" assessment this week at CBTF: extra credit opportunity
- Written Exam next Thursday, Nov 8, 7-9pm
  - Locations will be posted on Piazza
- This is the last week of TAM 210 (lectures and discussion!)

□ Upcoming deadlines:

- Friday (11/2)
  - PL HW



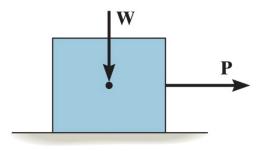
## Friction

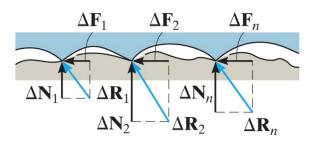
## Friction

Friction is a force that resists the movement of two contacting surfaces that slide relative to one another. This force acts tangent to the surface at the points of contact and is directed so as to oppose the possible or existing motion between the surfaces.

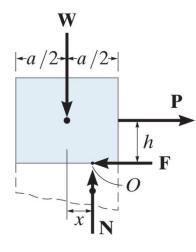
Dry Friction (or Coulomb friction) occurs between the contacting surfaces of bodies when there is no lubricating fluid.

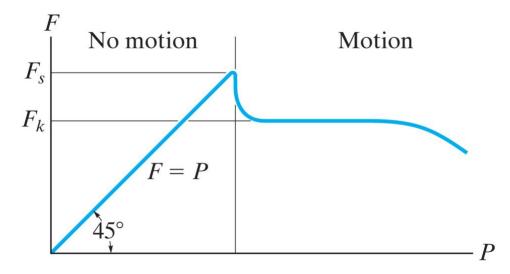






### The effective design of each brake on this railroad wheel requires that it resist the frictional forces developed between it and the wheel. In this chapter we will study dry friction, and show how to analyze friction forces for various engineering applications.

Copyright ©2013 Pearson Education, publishing as Prentice Hall


# Dry friction


- Consider the effects of pulling horizontally (force P) a block of weight W which is resting on a rough surface.
- The floor exerts an uneven distribution of normal forces  $\Delta N_n$  and frictional forces  $\Delta F_n$ along the contacting surface.
- These distributed loads can be represented by their equivalent resultant normal forces *N* and frictional forces *F*



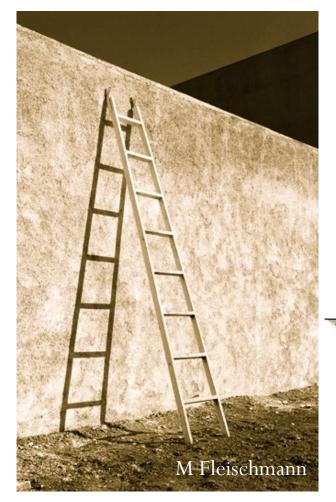


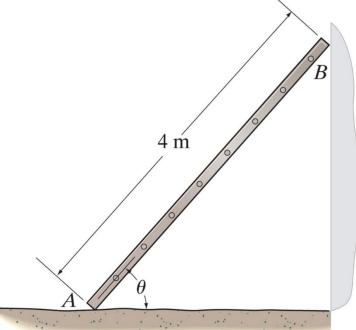
## Dry friction

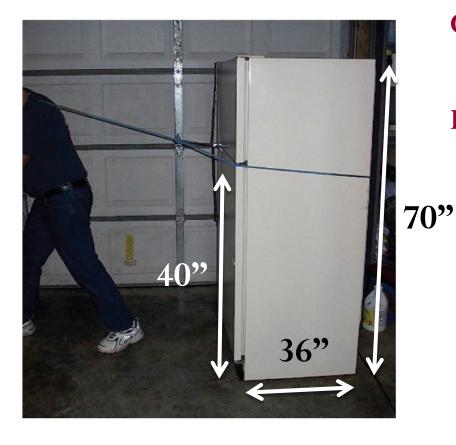




| Table 8–1 Typical Values for $oldsymbol{\mu}_s$ |                                            |
|-------------------------------------------------|--------------------------------------------|
| Contact<br>Materials                            | Coefficient of Static Friction ( $\mu_s$ ) |
| Metal on ice                                    | 0.03–0.05                                  |
| Wood on wood                                    | 0.30-0.70                                  |
| Leather on wood                                 | 0.20-0.50                                  |
| Leather on metal                                | 0.30-0.60                                  |
| Aluminum on aluminum                            | 1.10–1.70                                  |


Copyright @2013 Pearson Education, publishing as Prentice Hall


## Determine $\mu_s$ Experimentally


A block with weight W is placed on an inclined plane. What will happen to the block when the plane is slowly tilted?

## Example

A wooden ladder with a mass of 10 kg is leaning against a smooth wall on an icy ground. Can it maintain equilibrium if  $\theta = 30^{\circ}$ ?







**Given**: Fridge weight = 250 lb and  $\mu_s = 0.4$ 

Find: The maximum horizontal force P that can be applied at without causing movement of the crate.

It is observed that when the bed of the dump truck is raised to an angle of the vending machines will begin to slide off the bed. Determine the static coefficient of friction between a vending machine and the surface of the truck bed.

