Announcements

• CBTF Quiz 5 starts tomorrow (Thu, 11/29)

Q0: Example Quiz									
Total points: 0/60 0% Assessment is closed and you cannot answer questions.									
For this practice quiz you can use this Centroid and Moment of Inertia Table.									
Question	Best submission ③	Available points ⑦	Awarded points ⑦						
Question 1	unanswered	—	0 /10						
Question 2	unanswered	—	0 /10						
Question 3	unanswered	—	0 /10						
Question 4	unanswered	_	0 /10						

- □ Upcoming deadlines:
- Friday (11/30)
 - Written Assignment
- Tuesday (12/4)
 - PL HW

Parallel axis theorem

- Often, the **moment of inertia** of an area is known for an axis passing through the **centroid**; e.g., *x* and *y* :
- The moments around other axes can be computed from the known $I_{x'}$ and $I_{y'}$:

Note: the integral over y' gives zero when done through the centroid axis.

Moment of inertia of composite

- If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions.
- This requires the **parallel axis theorem**:

Rectangle	$\begin{array}{c c} y & y' \\ \hline h \\ \hline \\ h \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	$\begin{split} \overline{I}_{x} &:= \frac{1}{12}bh^{3} \\ \overline{I}_{y} &:= \frac{1}{12}b^{3}h \\ I_{x} &= \frac{1}{3}bh^{3} \\ I_{y} &= \frac{1}{3}b^{3}h \\ J_{C} &= \frac{1}{12}bh(b^{2} + h^{2}) \end{split}$
Triangle	$\begin{array}{c c} \hline \\ h \\ \hline \\$	$\overline{I}_{x} = \frac{1}{36}bh^{3}$ $I_{x} = \frac{1}{12}bh^{3}$
Circle	y o x	$\begin{split} \overline{I}_x &= \overline{I}_y = \frac{1}{4}\pi r^4 \\ J_O &= \frac{1}{2}\pi r^4 \end{split}$
Semicircle	y C O $r \rightarrow x$	$I_x = I_y = \frac{1}{8}\pi r^4$ $J_O = \frac{1}{4}\pi r^4$
Quarter circle	y $\bullet c$ O $r \rightarrow x$	$\begin{split} I_x &= I_y = \frac{1}{16} \pi r^4 \\ J_O &= \frac{1}{8} \pi r^4 \end{split}$
Ellipse		$\begin{split} \overline{I}_x &= \frac{1}{4}\pi ab^3 \\ \overline{I}_y &= \frac{1}{4}\pi a^3 b \\ J_O &= \frac{1}{4}\pi ab(a^2+b^2) \end{split}$

Find the moment of inertia about its centroid:

Two channels are welded to a rolled W section as shown. Determine the moments of inertia of the combined section with respect to the centroidal x and y axes.

		Area		Donth Width	Axis X-X			Axis Y-Y			
		Designation	in ²	in.	in.	$\overline{I}_{\rm x}$, in ⁴	$\overline{k}_{\rm x},$ in.	y, in.	$\overline{I}_{g},\mathrm{in4}$	$\overline{k}_{g},$ in.	\overline{x} , in.
W Shapes (Wide-Flange Shapes) X	Y x x y	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
S Shapes (American Standard Shapes) X	x y y	$S18 \times 54.7$ $S12 \times 31.8$ $S10 \times 25.4$ $S6 \times 12.5$	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	801 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.980 0.702	
С Shapes (American Standard Channels) Х	γ	$C12 \times 20.7^{\dagger}$ $C10 \times 15.3$ $C8 \times 11.5$ $C6 \times 8.2$	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
Angles X Y X Y Y Y Y	x	$L6 \times 6 \times 1\ddagger$ $L4 \times 4 \times \frac{1}{2}$ $L3 \times 3 \times \frac{1}{4}$ $L6 \times 4 \times \frac{1}{2}$ $L5 \times 3 \times \frac{1}{2}$ $L3 \times 2 \times \frac{1}{4}$	11.0 3.75 1.44 4.75 3.75 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.983	1.86 1.18 0.836 1.98 1.74 0.980	38.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

						Axis X-X		A			
		Designation	Area mm ²	Depth mm	Width mm	\overline{I}_x 10 ⁶ mm ⁴	\overline{k}_x mm	\overline{y} mm	\overline{I}_{g} 10° mm ⁴	\overline{k}_y mm	\overline{x} mm
W Shapes (Wide-Flange Shapes)	x x	$W460 \times 113^{\dagger}$ W410 $\times 85$ W360 $\times 57.8$ W200 $\times 46.1$	14400 10900 7230 5890	462 417 358 203	279 181 172 203	554 316 160 45.8	196 171 149 88.1		63.3 17.9 11.1 15.4	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	x x	S460 × 81.4† S310 × 47.3 S250 × 37.8 S150 × 18.6	10300 6010 4810 2360	457 305 254 152	152 127 118 84.6	333 90.3 51.2 9.16	180 123 103 62.2		8.62 3.88 2.80 0.749	29.0 25.4 24.1 17.8	
C Shapes (American Standard Channels)	$x \rightarrow \overline{x}$ \overline{x}	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3920 2890 2170 1540	305 254 203 152	74.7 66.0 57.4 48.8	53.7 28.0 13.5 5.45	117 98.3 79.0 59.4		1.61 0.945 0.545 0.296	20.2 18.1 15.8 13.6	17.7 16.1 14.5 13.0
Angles X Y \rightarrow X \rightarrow X γ	x	$L152 \times 152 \times 25.4$ $L102 \times 102 \times 12.7$ $L76 \times 76 \times 6.4$ $L152 \times 102 \times 12.7$ $L127 \times 76 \times 12.7$ $L76 \times 51 \times 6.4$	7100 2420 929 3060 2420 768			14.7 2.30 0.512 7.20 3.93 0.454	45.5 30.7 23.5 45.5 40.1 24.2	47.2 30.0 21.2 50.3 44.2 24.9	14.7 2.30 0.512 2.59 1.06 0.162	45.5 30.7 23.5 29.0 20.9 14.5	47.2 30.0 21.2 24.9 18.9 12.4