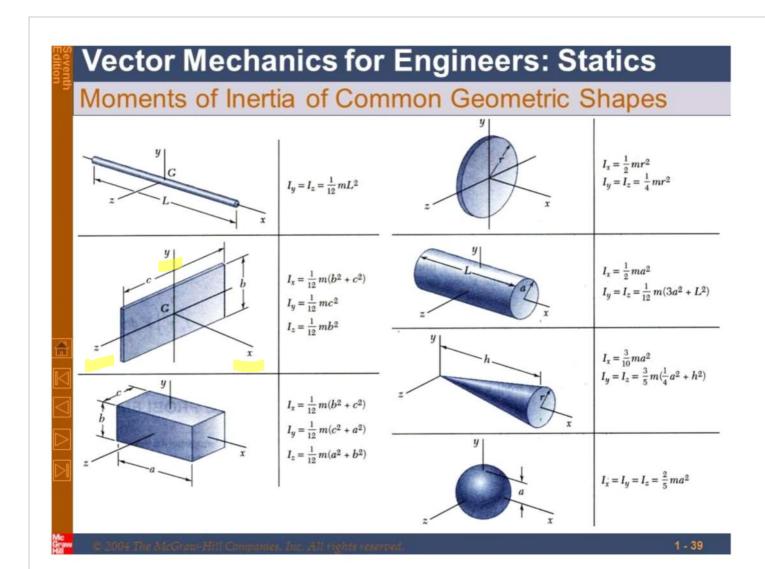
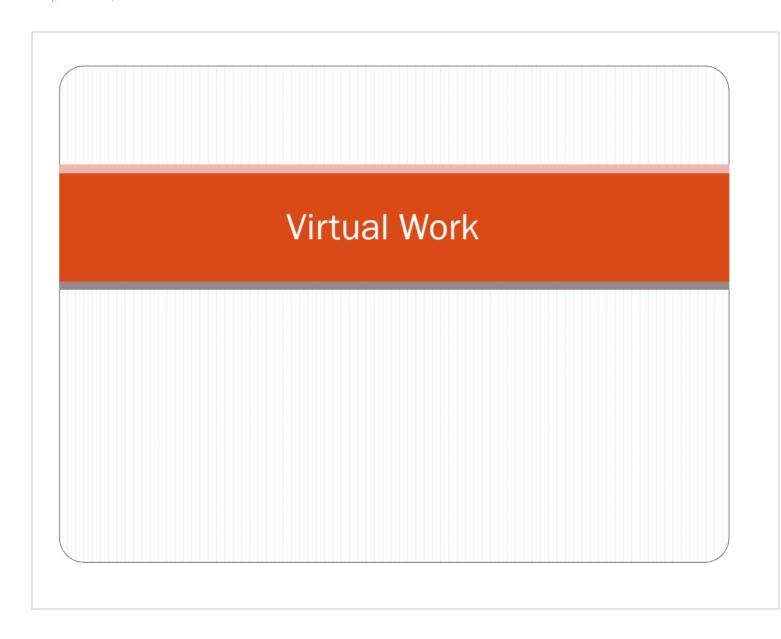

Announcements

• CBTF Quiz 5 continues.

- ☐ Upcoming deadlines:
- Friday (11/30)
 - Written Assignment
- Tuesday (12/4)
 - PL HW

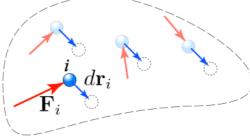




			Area in ²	Depth in.	Width in.	Axis X-X			Axis Y-Y		
		Designation				\overline{I}_{x} , in ⁴	$\overline{k}_{\mathrm{r}}$, in.	y, in.	\overline{I}_y , in4	\overline{k}_{g} , in.	\overline{x} , in
W Shapes (Wide-Flange Shapes)	XXX	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 788 385 110	7.73 6.72 5.87 3.47	3	152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	7
S Shapes (American Standard Shapes)	x x	\$18 \times 54.7†\$\$12 \times 31.8\$\$\$10 \times 25.4\$\$\$\$6 \times 12.5\$\$\$	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	901 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.980 0.702	
C Shapes (American Standard Channels)	x — x — x	C12×20.7† C10×15.3 C8×11.5 C6×8.2	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
Angles X	$ \sqrt{\bar{g}}$ x	L6×6×1‡ L4×4×1= L3×3×14 L6×4×1= L5×3×1= L5×3×1= L5×3×1= L3×2×1	11.0 3.75 1.44 4.75 3.75 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.983	1.86 1.18 0.836 1.98 1.74 0.980	35.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

						A	ods X-X	Axis Y-Y			
		Designation	Area mm²	Depth mm	Width mm	\overline{I_x} 106 mm⁴	\overline{k}_{r} mm	y mm	100 mm4	\overline{k}_{y} mm	mm
W Shapes (Wide-Flange Shapes)	x x	W460 × 113† W410 × 85 W360 × 57.8 W200 × 46.1	14400 10900 7230 5880	462 417 356 203	279 181 172 203	554 316 160 45.8	196 171 149 88.1		63.3 17.9 11.1 15.4	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	xx	\$460 × 81.4† \$310 × 47.3 \$250 × 37.8 \$150 × 18.6	10300 6010 4810 2360	457 305 254 152	152 127 118 84.6	333 90.3 51.2 9.16	180 123 103 62.2		8.62 3.88 2.80 0.749	29.0 25.4 24.1 17.8	
C Shapes (American Standard Channels)	$x \xrightarrow{\gamma} x$	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3920 2990 2170 1540	305 254 203 152	74.7 66.0 57.4 48.8	53.7 28.0 13.5 5.45	117 98.3 79.0 59.4		1.61 0.945 0.545 0.296	20.2 18.1 15.8 13.6	17.7 16.1 14.5 13.0
Angles X Y Y Y Y		L182 × 182 × 25.4‡ L102 × 102 × 12.7 L76 × 76 × 6.4 L182 × 102 × 12.7 L127 × 76 × 12.7 L76 × 51 × 6.4	7100 2420 929 3060 2420 768			14.7 2.30 0.512 7.20 3.93 0.454	45.5 30.7 23.5 48.5 40.1 24.2	47.2 30.0 21.2 50.3 44.2 24.9	14.7 2.30 0.512 2.59 1.06 0.162	45.5 30.7 23.5 29.0 20.9 14.5	47.2 30.0 21.2 24.9 18.9 12.4

Determine the moments of inertia of the bracket 200 mm with respect to the x- and y-axes. V = volume 200 mm Ix = Ix, + Ix2 - Ixg - Ix4 $100 \, \mathrm{mm}$ = Ix1 + (Ix2+ d2V2) - Ix31 - (I14+ d2V4) 200 mm Ix1 = 12 (400 mm)2 100 mm Ixz' = 12 V (400 mm² + 4002 mm²) (1) 200 mm 200 mm dyz = 200 mm 200 mm v 200 mm V= (400mm)2(t) 200 mm 1x3, = 14 V (100mm)2 Figure: 10_P106-107 [xx, = \frac{5}{1} A (100mm), dy4 = 200 mm. V+= Ti (100 mm)2 t


Main goals and learning objectives

- Introduce the principle of virtual work
- Show how it applies to determining the equilibrium configuration of a series of pin-connected members

Definition of Work

Work of a force

A force does work when it undergoes a displacement in the direction of the line of action.

The work dU produced by the force F when it undergoes a differential displacement dr if given by

$$dU = \mathbf{F} \cdot d\mathbf{r}$$

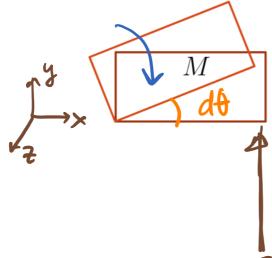
$$\vec{F} = F\hat{j}$$

$$d\vec{t} = dr\hat{i}$$

$$\vec{F} = f\hat{i}$$

$$d\vec{v} = fdr$$

$$\vec{T} = dr\hat{i}$$

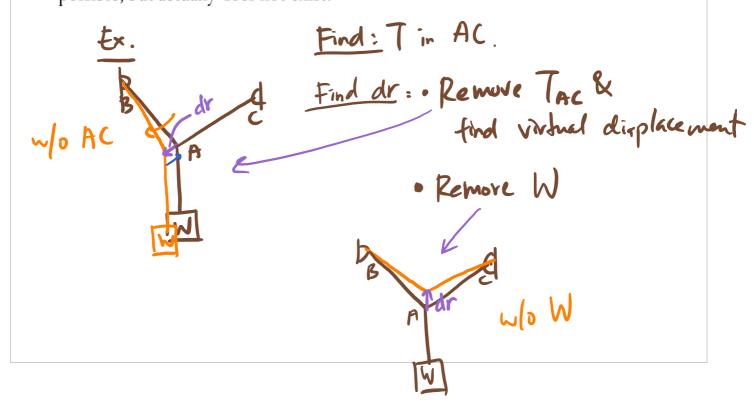

$$\vec{F} = f_{x}\hat{i} + f_{y}\hat{j}$$

$$d\vec{v} = dr\hat{i}$$

Definition of Work

Work of a couple dU = M

$$dU = M\mathbf{k} \cdot d\theta \mathbf{k} = M d\theta$$

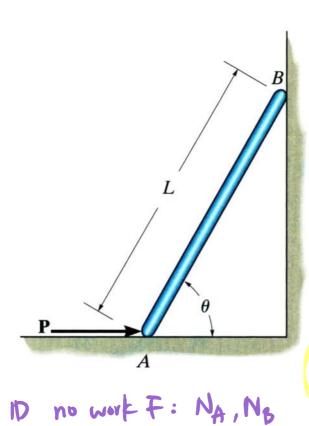

. IF M & db go in the some direction: + work

Otherwise : - work

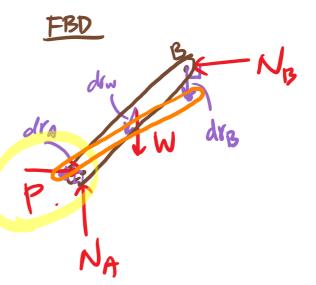
LFF --- or (- work)

Virtual Displacements

A *virtual displacement* is a conceptually possible displacement *or* rotation of all *or* part of a system of particles. The movement is assumed to be possible, but actually does not exist.



Principle of Virtual Work


The principle of virtual work states that if a body is in equilibrium, then the algebraic sum of the virtual work done by all the forces and couple moments acting on the body is zero for any virtual displacement of the body. Thus,

$$dU = 0$$

$$dU = dU_1 + dU_2 + dU_3 + dU_4 = 0$$

The thin rod of weight *W* rests against the smooth wall and floor. Determine the magnitude of force *P* needed to hold it in equilibrium.

du = dup + duw = 0 = - pdr_A + wdr_w = 0 neadle positive work.