Statics - TAM 210 & TAM 211

Lecture 2 January 19, 2018

Announcements WA1: now available, due Thurs

- ☐ Go through course website (policies, info, schedule)
 - □ See instructions to register for Mastering Engineering on info page
 - ☐Must purchase ME Access Code (stand alone code, + eText, + hard copy)
- □ Register i>clicker (Compass2g)
- ☐ Grainger office hours start TODAY.
- ☐ MATLAB training sessions TBA (next 2 weeks)
- ☐ Take practice Quiz 0 on PrairieLearn (not graded)
- ☐ Upcoming deadlines:
- Friday (1/19)
 - Mastering Engineering Tutorial 2
- Sunday (1/21)
 - PrairieLearn HW0
- Tuesday (1/23)
 - PrairieLearn HW1

expedia.com

Chapter 1: General Principles Main goals and learning objectives

- Introduce the basic ideas of *Mechanics*
- Give a concise statement of Newton's laws of motion and gravitation
- Review the principles for applying the SI system of units
- Examine standard procedures for performing numerical calculations
- Outline a general guide for solving problems

Numerical Calculations

Dimensional Homogeneity

Equations *must* be dimensionally homogeneous, i.e., each term must be expressed in the same units.

Work problems in the units given unless otherwise instructed!

Numerical Calculations

Significant figures

Number of significant figures contained in any number determines accuracy of the number. Use ≥ 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, to maintain precision.

Example: Find area of circle with rectangular cut-out.

$$A = \frac{\pi d^2}{4} - wh$$

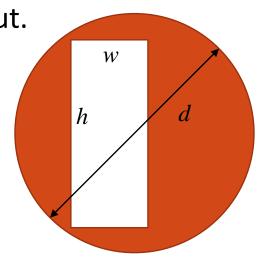
Given: d = 3.2 in., w = 1.413 in., and h = 2.7 in.

Solution:
$$A = \frac{\pi d^2}{4} - wh$$

$$= \frac{\pi (3.2)^2}{4} - (1.413)(2.7) \text{ in}^2$$

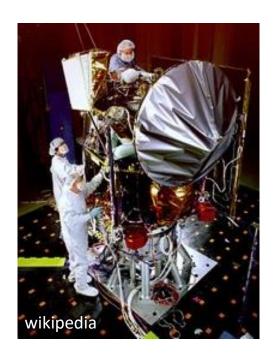
$$= 4.227 \text{ in}^2$$

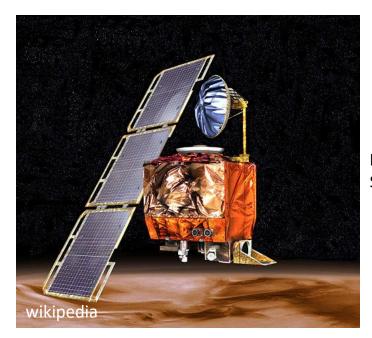
$$\Rightarrow A = 4.23 \text{ in}^2$$



Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms.
 - Actual price = \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, plane ran out of fuel because pilot mistook liters for gallons!





Mars climate orbiter – \$327.6 million

General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. MODELTHE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- 5. Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to solve problems!

Chapter 2: Force Vectors

Chapter 2: Force vectors Main goals and learning objectives

Define scalars, vectors and vector operations and use them to analyze forces acting on objects

- Add forces and resolve them into components
- Express force and position in Cartesian vector form
- Determine a vector's magnitude and direction
- Introduce the dot product and use it to find the angle between two vectors or the projection of one vector onto another

Scalars and vectors

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special	No special font	Bold font or symbols (~ or →)
notation used in TAM 210/211	A	Ex: \mathbf{A} , $\widetilde{\mathbf{A}}$, $\overline{\mathbf{A}}$

Multiplication or division of a vector by a scalar

$$\overrightarrow{B} = \alpha \overrightarrow{A}$$

Given J Vector A A

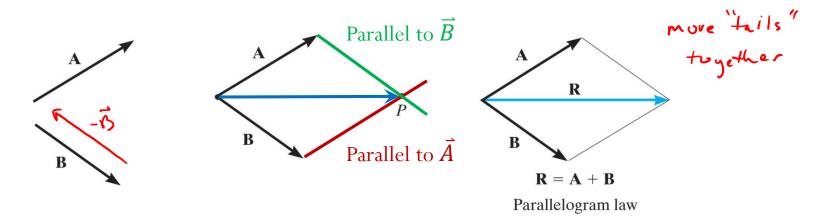
$$\vec{\beta} = \alpha \vec{A}$$

$$\alpha = 2$$

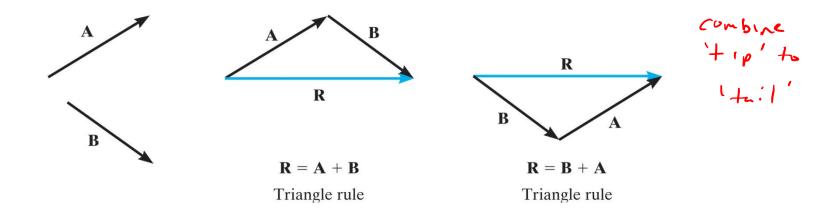
$$\vec{\beta}$$

Vector addition

All vector quantities obey the parallelogram law of addition $\, {m R} = {m A} + {m B} \,$



Commutative law: R = A + B = B + A

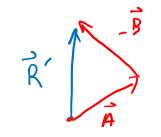


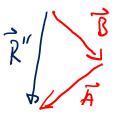
Associative law: A + (B + C) = (A + B) + C

Vector subtraction:

$$R = A - B = A + (-B)$$

 $(-\boldsymbol{B})$ has the same magnitude as \boldsymbol{B} but is in opposite direction.





NOTE:
$$\overrightarrow{A} - \overrightarrow{g} \neq \overrightarrow{B} - \overrightarrow{A}$$

$$\overrightarrow{R}' \neq \overrightarrow{R}''$$

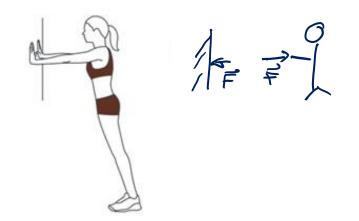
Scalar/Vector multiplication:

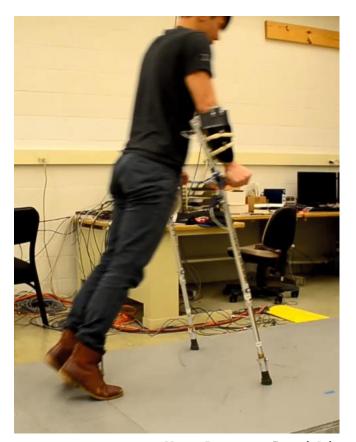
$$\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$$

$$(\alpha + \beta)\mathbf{A} = \alpha \vec{\mathbf{A}} + \beta \vec{\mathbf{A}}$$

Force vectors

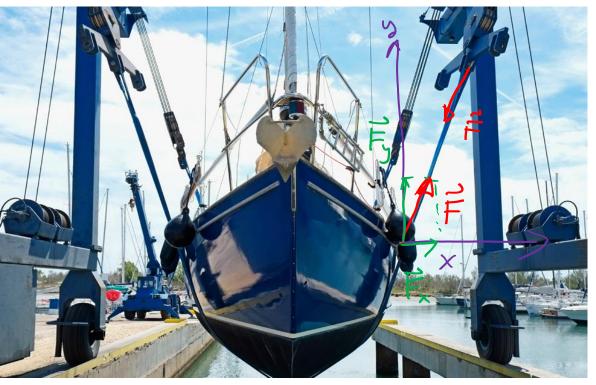
A force—the action of one body on another—can be treated as a vector, since forces obey all the rules that vectors do.





Human Dynamics & Controls Lab

_oA



Generally asked to solve two types of problems.

- 1. Find the resultant force.
- 2. Resolve the force into components

www.altramotion.com

Force on the boat

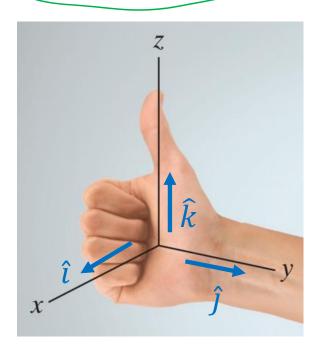
$$F = F_x + F_y$$

Cartesian vectors

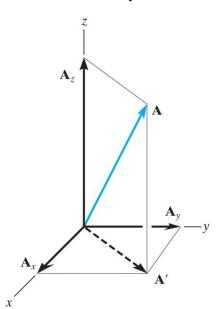
Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes with unit vectors $(\hat{i}, \hat{j}, \hat{k})$ in these directions.

Note that we use the special notation "^" to identify basis vectors (instead of the "~" or " → " notation)

$$(\hat{i},\,\hat{j},\,\hat{k}) \text{ or } (\boldsymbol{i},\,\boldsymbol{j},\,\boldsymbol{k})$$

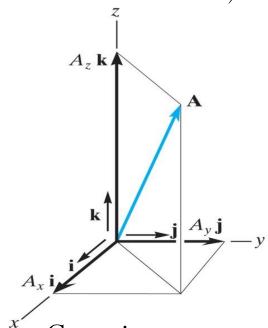


Right-handed coordinate system



Rectangular components of a vector

$$\vec{A} = \vec{A}_{x} + \vec{A}_{y} + \vec{A}_{z}$$



Cartesian vector representation

$$\vec{A} = \vec{A}_{x} + \vec{A}_{y} + \vec{A}_{z}$$

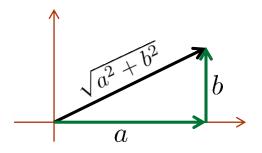
$$\vec{A} = A_{x} \hat{i} + A_{y} \hat{j} + A_{z} \hat{k}$$

$$\vec{A}_{x} = A_{x} \hat{i} + A_{y} \hat{j} + A_{z} \hat{k}$$

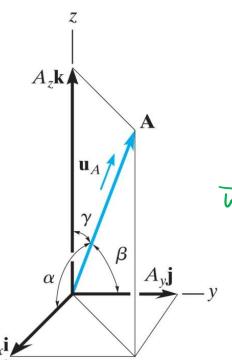
$$\vec{A}_{x} = A_{x} \hat{i} + A_{y} \hat{j} + A_{z} \hat{k}$$
basis vector

Magnitude of Cartesian vectors

$$A = |\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$



Direction of Cartesian vectors



Expressing the direction using a **unit vector**:

$$u_A = \frac{A}{A}$$

$$\vec{h}_A = \frac{\vec{A}_x}{|\vec{A}|} + \frac{\vec{A}_y}{|\vec{A}|} + \frac{\vec{A}_z}{|\vec{A}|} \hat{k}$$

Direction cosines are the components of the unit vector: $cos = \frac{Adj}{Hyp}$

$$(Os(\alpha) = \frac{|\overrightarrow{A}_{\times}|}{|\overrightarrow{A}|} = \frac{A_{\times}}{A}$$

$$Cos(B) = \frac{Ay}{A}$$

$$Cos(B) = \frac{Az}{A}$$

Addition of Cartesian vectors

$$R = \vec{A} + \vec{B} = (A_x + B_x) + (A_y + B_y) + (A_z + B_z)$$

