Statics - TAM 210 & TAM 211

Lecture 7
January 31, 2018

Announcements

- ☐ Upcoming deadlines:
- Quiz 1 (1/31-2/2)
 - Reserve testing time at CBTF
 - https://cbtf.engr.illinois.edu/sched/
 - NO MAKE-UP.
 - Lectures 1-4 material
- Friday (2/1)
 - Mastering Engineering Tutorial 4
- Tuesday (2/6)
 - PL Homework 3
- Quiz 2 (2/7-9)
 - Reserve testing time at CBTF

Recap: Equations of equilibrium

- \square Use FBD to write equilibrium equations in x, y, z directions
 - $\square \Sigma \overrightarrow{F_x} = 0, \Sigma \overrightarrow{F_y} = 0,$ and if $3D \Sigma \overrightarrow{F_z} = 0,$
 - ☐ If # equations ≥ # unknown forces, **statically determinate** (can solve for unknowns)
 - ☐ If # equations < # unknown forces, **indeterminate** (can **NOT** solve for unknowns), need more equations
- ☐ Get more equations from FBD of other bodies in the problem

Recap: Idealizations

Smooth surfaces: regarded as frictionless; force is perpendicular to surface

Pulleys: (usually) regarded as frictionless; tension around pulley is same on either side.

Springs: (usually) regarded as linearly elastic; tension is proportional to *change* in length s.

Smooth surface

Frictionless pulley

Linearly elastic spring

Equilibrium of a system of particles

Some practical engineering problems involve the statics of interacting or interconnected particles. To solve them, we use Newton's first law

$$\Sigma \mathbf{F} = \mathbf{0}$$

on selected multiple free-body diagrams of particles or groups of particles.

The five ropes can each take 1500 N without breaking. How heavy can *W* be without breaking any?

The five ropes can each take 1500 N without breaking. How heavy can W be without breaking any?

3D force systems Use $\Sigma \vec{F_x} = 0$, $\Sigma \vec{F_y} = 0$, $\Sigma \vec{F_z} = 0$

Example - 3D

Determine the stretch in each of the two springs required to hold the 20-kg crate in the equilibrium position shown. Each spring has an unstretched length of 2 m and a stiffness of k = 360 N-m.

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the <u>moment of a force</u> and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of <u>distributed loading</u>

Moment of a force

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

Moment 1.A very brief period of time. An exact point in time. 2. Importance. 3. A turning effect produced by a force acting at a distance on an object. Oxford Dictionary

Moment of a force - scalar formulation

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

Moment of a force - vector formulation

The moment of a force \vec{F} about point O, or actually about the moment axis passing through O and perpendicular to the plane containing O and \vec{F} , can be expressed using the cross (vector) product, namely:

where \overrightarrow{r} is the position vector directed from O to any point on the line of action of \overrightarrow{F} .

Moment of a force – <u>vector formulation</u>

