Statics - TAM 210 \& TAM 211

Lecture 8
February 2, 2018

Announcements

\square CBTF has physical calculators!!! Casio fx-300MS (see CBTF website)
\square Upcoming deadlines:

- Quiz 1 (1/31-2/2)
- Reserve testing time at CBTF
- https:/ / cbtf.engr.illinois.edu/sched/
- NO MAKE-UP.
- Lectures 1-4 material
- Friday (2/1)
- Mastering Engineering Tutorial 4
- Tuesday (2/6)
- PL Homework 3
- Quiz 2 (2/7-9)
- Reserve testing time at CBTF
- Lectures 5-9

THE GROUNDHOG
SAID SIX MORE
WEEKS OF WINTER...

So I ATE HIM.
http://www.groundhogday2018shadow.info/2016/11/happy-groundhog-day-images.html

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force

Scalar Formulation: $M_{O}=F d \quad$ Scalar Formulation: $M_{O}=F d$,

Direction: Moment about point $O \overrightarrow{M_{O}}$ is perpendicular to the plane that contains the force \vec{F} and its moment arm \vec{d}. The right-hand rule is used to define the sense.

Magnitude: In a 2D case (where \vec{F} is perpendicular to $\overrightarrow{\boldsymbol{d}}$), the magnitude of the moment about point O is $M_{O}=F d$

Recap: Moment of a force

Vector Formulation

Use cross product: $\overrightarrow{M_{O}}=\vec{r} \times \vec{F}$
Direction: Defined by right hand rule.

$$
\overrightarrow{\boldsymbol{M}_{O}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \widehat{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left(r_{y} F_{z}-r_{z} F_{y}\right) \hat{\imath}-\left(r_{x} F_{z}-r_{z} F_{x}\right) \hat{\boldsymbol{\jmath}}+\overbrace{\left(r_{x} F_{y}-r_{y} F_{x}\right) \widehat{\boldsymbol{k}}}^{=\vec{M}_{0}(x, y \text { cuse })}
$$

Magnitude:
$\boldsymbol{M}_{O}=\left|\overrightarrow{\boldsymbol{M}_{O}}\right|=|\overrightarrow{\boldsymbol{r}}||\overrightarrow{\boldsymbol{F}}| \sin \theta=F(r \sin \theta)=F$ d $\begin{aligned} & \text { d is the perpendicular dirtance } \\ & \text { from } \mathrm{O} \text { to } \vec{F}\end{aligned}$

Moment of a force about a specified axis

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the x axis.

