Statics - TAM 210 \& TAM 211

Lecture 11
February 9, 2018

Announcements

\square Note there are videos of solving more sample problems under Schedule tab of course website
\square Upcoming deadlines:

- Quiz 2 (2/7-9)
- Reserve testing time at CBTF
- Lectures 5-9
- Friday (2/9)
- Mastering Engineering Tutorial 5
- Tuesday (2/13)
- PL Homework 4

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Two couples act on the beam with the geometry shown and, $d=4 \mathrm{ft}$. Find the resultant couple $M_{k}=\sum \vec{m}_{i}$
In response to student question about couple moment when \vec{r} is not \perp to \vec{F} :

For upper beam, what is the Moment due to the solb force Couple? Find: $\vec{M}_{\text {upper }}$

$$
\begin{aligned}
\vec{M}_{\text {upper }} & =\vec{r} \times \vec{F} \\
& =\vec{r}_{C D} \times \vec{F}_{1} \\
& =(-3 f+\hat{\imath}) \times 50(\sin 30 \hat{\imath} \\
& =-130 \mathrm{ft} 1 \mathrm{1b} \hat{k} \quad+\cos 30 j) 16
\end{aligned}
$$

Alternatively,
where d is 1 distance

$$
\begin{aligned}
\left|M_{\text {upper }}\right| & =d F \\
& =\left(\left|r_{c>}\right| \cos 30^{\circ} \mathrm{ft}\right)(50 \mathrm{lb}) \\
& =\left(3 \cos 30^{\circ}\right) 50 \mathrm{ft} .1 \mathrm{~b} \\
& =130 \mathrm{ft} \cdot \mathrm{1b} \mathrm{cc} \mathrm{\omega}(-\hat{\mathrm{k}}) \\
\vec{M}_{\text {upper }} & =-130 \mathrm{ft} 1 \mathrm{w}^{\mathrm{k}} V \text { same }
\end{aligned}
$$

Q: Which components of forces contribute to rotation
\therefore Resultant couple

$$
\begin{aligned}
\vec{M}_{R} & =\vec{M}_{\text {upper }}+\vec{M}_{\text {Lower }} \\
& =-130 \hat{k}+256 \hat{k} \text { ft.16 }
\end{aligned}
$$ of the body?

Moving a force on its line of action

https://www.wikihow.com/Win-at-Tug-of-War

Moving a force on its line of action

Moving a force from A to B, when both points are on the vector's line of action, does not change the external effect.

Hence, a force vector is called a sliding vector.
However, the internal effect of the force on the body does depend on where the force is applied.
\boldsymbol{F}_{1} and \boldsymbol{F}_{2} form a couple.

F_{2}
\boldsymbol{F}_{1} and \boldsymbol{F}_{2} form a couple.

Moving a force on its line of action

Moving a force off of its line of action

The two force systems are equipollent since the resultant force is the same in both systems, and the resultant moment with respect to any point P is the same in both systems.

So moving a force off its line of action means you have to "add" a new couple. Since this new couple moment is a free vector, it can be applied at any point on the body.

Are these systems the same?

Force system I

Force system II

B - NO

Equipollent (or equivalent) force

systems

A force system is a collection of forces and couples applied to a body.

Two force systems are said to be equipollent (or equivalent) if they have the same resultant force AND the same resultant moment with respect to any point O.

Reducing a force system to a single resultant force \boldsymbol{F}_{R} and a single resultant couple moment $\left(\boldsymbol{M}_{R}\right)_{o}$:

$$
\begin{align*}
& \overrightarrow{\boldsymbol{F}_{\boldsymbol{R}}}=\Sigma F_{x} \hat{\boldsymbol{\imath}}+\Sigma F_{y} \hat{\boldsymbol{\jmath}}+\Sigma F_{z} \widehat{\boldsymbol{k}} \\
& \quad\left|\overrightarrow{\boldsymbol{F}_{\boldsymbol{R}}}\right|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{\mathrm{z}}^{2}} \quad \theta=\tan ^{-1} \frac{F_{o p p}}{F_{a d j}} \tag{c}\\
& \left(\boldsymbol{M}_{R}\right)_{o}=\sum \boldsymbol{M}_{o}+\sum \boldsymbol{M}
\end{align*}
$$

(a)

Reduction to a simple distributed load

The lumber places a distributed load (due to the weight of the wood) on the beams. To analyze the load's effect on the steel beams, it is often helpful to reduce this distributed load to a single force. How would you do this?

To be able to design the joint between the sign and the sign post, we need to determine a single equivalent resultant force and its location.

Reduction to

\rightarrow simplifies force at $\quad \| F_{R} \rightarrow w(x)=p(x) \cdot b$

\bar{x}
L
In structural analysis, often presented with distributed load $w(x)$ (force /unit length) and need to find equivalent loading $\underset{\uparrow}{\boldsymbol{F}}$.

Ex: winds, fluids, weight on body's surface.

$$
(x) \text { is a fungo position } x \text { along the beam }
$$ $\vdots \frac{-o r c e}{\text { Len }}\left[\begin{array}{c}N \\ n\end{array}\right] o-\left[\frac{16}{f}\right]$ By equipollence, we require that $\sum \boldsymbol{F}$ be the samêet in both systems, ie.,

$$
|\overrightarrow{\boldsymbol{F}}|=\int_{0}^{L} w(x) d x=A \quad \begin{aligned}
& \vec{F}_{R} \text { area under the } \\
& \text { loading function curve }
\end{aligned}
$$

and $\sum \boldsymbol{M}_{P}$ with respect to any point P be the same in both systems, i.e.,

$$
\int_{0}^{L} w(x) x d x=\bar{x} \boldsymbol{F}
$$

\bar{x} is location at which \vec{F}_{R}
is applied

Combining both equations gives:

$$
\bar{x}=\frac{\int_{0}^{L} w(x) x d x}{\int_{0}^{L} w(x) d x}
$$

$\bar{x}=$ geometric center or centroid of area A under loading curve $w(x)$.

Rectangular loading

$$
w(x)=w_{0} \quad \boldsymbol{F}=\int_{0}^{L} w(x) d x \quad \bar{x}=\frac{\int_{0}^{L} w(x) x d x}{\int_{0}^{L} w(x) d x}
$$

$$
\left|\vec{F}_{\mathrm{R}}\right|=\int_{0}^{L} w_{o} d x=w_{o} L
$$

$$
\bar{x}=\frac{\int_{0}^{L} w_{o} x d x}{\int_{0}^{L} w_{o} d x}=\frac{w_{o} \frac{L^{2}}{2}}{w_{o} L}=\frac{L}{2}
$$

Triangular loading

