Statics - TAM 210 \& TAM 211

Lecture 13
February 14, 2018

Announcements

\square READ Piazza posts! If you had difficulty with Quiz 2, start reading and creating posts. There is a direct correlation with reviewing posts and quiz grade.
\square Cumulative exam, Thursday, April 5, 7-9pm, 1 Noyes Lab
\square If you need DRES accommodation, send private message to instructors on Piazza with PDF of DRES letter. You must make your own arrangements at DRES testing facilities.
Conflict exam request: MUST send private message instructors on Piazza now or at least 2 weeks before the exam date. Only legitimate conflicts will be allowed. See Information tab > Exam
\square Upcoming deadlines:

- Written Assignment $2(2 / 15)$
- Friday (2/16)
- Mastering Engineering Tutorial 6 - Qu.z3 (W-F)

Quiz 1: Score statistics
Quiz 1: Duration statistics

Number of students

276

86%	Mean duration	35 m
20%	Median duration	34 m

Minimum duration 13 m

- Practice PL HW on your own
- Monitor your time
- Read each question, write givens, unknowns, draw FBD, write out equations
- Exam reflections
- What did you do to prepare for the quiz?
- What concepts did you struggle with?
- What can you do differently to prepare for the next quiz?

Chapter 5: Equilibrium of Rigid Bodies

Focus on 2D problems
Sections 5.1-5.4, 5.7

TAM 211 students will cover 3D problems (sections 5.5-5.6) in week 13

Goals and Objectives

- Introduce the free-body diagram for a 2D rigid body
- Develop the equations of equilibrium for a 2D rigid body
- Solve 2D rigid body equilibrium problems using the equations of equilibrium
- Introduce concepts of
- Support reactions
- Two- and three-force members
- Constraints and statical determinacy

Recap: Equilibrium of a Rigid Body

Reduce forces and couple moments acting on a body to an equivalent resultant force and a resultant couple moment at an arbitrary point O.

Recap: Equilibrium in two-dimensional bodies (Support reactions)

Smooth pin or hinge

- If a support prevents the translation of a body in a given direction, then a force is developed on the body on that direction
- If a rotation is prevented, a couple moment is exerted on the body

The operator applies a vertical force to the pedal so that the spring is stretched 1.5 in . and the force in the short link at B is 20 lb . Draw the FBD of the pedal

unknowns: $\vec{F} \vec{F}_{A x}, \vec{F}_{A_{y}}$
Directions of arrows of unknown forces/moments
$\sum F_{x}$ are arbitrary on FBD. Actual

$\sum F_{y}$
direction be determined with
¿M pt?: What point to select to compute moment+?
Pt A is good choice because $\vec{F}_{A_{x}} \not \$ \vec{F}_{A_{y}}$ do not contribute to moment about A.

$$
\therefore \sum M_{A}: \vec{r}_{F} \times \vec{F}+\vec{r}_{B} \times \vec{F}_{B}+\vec{r}_{C} \times \vec{F}_{S}=0
$$

Types of connectors/supports

TABLE 5-1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems
Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a tension force which acts away from the member in the direction of the cable.

One unknown. The reaction is a force which acts along the axis of the link.
(1)

cable
(2)

weightless link
(3)

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.

Types of connectors/supports

TABLE 5-1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems
Types of Connection Reaction Number of Unknowns

One unknown. The reaction is a force which acts perpendicular to the surface at the point of contact.
(6)

One unknown. The reaction is a force which acts perpendicular to the slot.
roller or pin in confined smooth slot
(7)

One unknown. The reaction is a force which acts perpendicular to the rod.
member pin connected
to collar on smooth rod

Types of connectors/supports

TABLE 5-1 Continued

Types of Connection Reaction Number of Unknowns
(8)

or

Two unknowns. The reactions are two components of force, or the magnitude and direction ϕ of the resultant force. Note that ϕ and θ are not necessarily equal [usually not, unless the rod shown is a link as in (2)].

Two unknowns. The reactions are the couple moment and the force which acts perpendicular to the rod.
member fixed connected
to collar on smooth rod
(10)

or

Three unknowns. The reactions are the couple moment and the two force components, or the couple moment and the magnitude and direction ϕ of the resultant force.

[^0]Identify support reaction types. Draw the FBD of body AB with forces in Cartesian coordinates.

Identify support reaction types. Draw the FBD of rigid body with forces in Cartesian coordinates.

25 kg bar with center of mass at G. Supported by smooth peg at C , roller at A , $\operatorname{cord} \mathrm{AB}$

Identify support reaction types. Draw the FBD of blue body with forces in Cartesian coordinates.
Pinned at A, smooth support at B. Neglect mass

Collar at A can slide vertically, roller @ B

Can you draw the FBDs of link AB and roller wheel B ?

[^0]: fixed support

