Statics - TAM 210 \& TAM 211

Lecture 19
February 28, 2018

Announcements

\square Monday's lecture: See recorded video lecture.
\square Concept Inventory: Ungraded assessment of course knowledge
\square Extra credit: Sign up at CBTF (2/26-3/1 M-Th)
\square Check your grades on Compass2g!
\square Upcoming deadlines:

- Thursday (3/1)
- WA 3
- See enhanced instructions
- Monday (3/5)
- Mastering Engineering Tutorial 8
- Tuesday (3/6)
- PL HW 6

Chapter 6: Structural Analysis

Goals and Objectives

- Determine the forces in members of a truss using the method of joints
- Determine zero-force members
- Determine the forces in members of a truss using the method of sections
- Determine the forces and moments in members of a frame or machine

As shown, a cut is made through members GH, BG and BC to determine the forces in them. Which section will you choose for analysis and why?
A) Right, fewer calculations.

B) Left, fewer calculations.
C) Either right or left, same amount of work.
D) None of the above, too many unknowns.

Can you determine the force in member ED by making the cut at section a-a? Explain your answer.
A) No, there are four unknowns.
B) Yes, using $\Sigma \mathrm{M}_{\mathrm{D}}=0$.
C) Yes, using $\Sigma \mathrm{M}_{\mathrm{E}}=0$.

4000 N
D) Yes, using $\Sigma \mathrm{M}_{\mathrm{B}}=0$.

Recap: Frames and machines

Frames and machines are two common types of structures that have at least one multi-force member. (Recall that trusses have only two-force members.) Therefore, it is not appropriate to use Method of Joints or Method of Sections for frames and machines.

Frames are generally stationary and used to support various external loads.

Machines contain moving parts and are designed to alter the effect of forces

Forces/Moment in frames and machines

The members can be truss elements, beams, pulleys, cables, and other components. The general solution method is the same:

1. Identify two-force member(s) to simplify direction of unknown force(s).
2. Identify external support reactions on entire frame or machine. (Draw FDB of entire structure. Set the structure into external equilibrium: $\sum F_{x}=0, \sum F_{y}=0, \sum M_{\text {most efficient } p t}=0$. This step will generally produce more unknowns than there are relevant equations of equilibrium.)
3. Draw FDBs of individual subsystems (members). (Isolate part(s) of the structure, setting each part into equilibrium $\sum F_{x}=0, \sum F_{y}=0$, $\sum M_{\text {most efficient pt }}=0$. The sought forces or couples must appear in one or more free-body diagrams.)
4. Solve for the requested unknown forces or moments. (Look for ways to solve efficiently and quickly: single equations and single unknowns; equations with least \# unknowns.)

Problems are going to be challenging since there are usually several unknowns (and several solution steps). A lot of practice is needed to develop good strategies and ease of solving these problems.

A note about why skip drawing FBD of the pin joint between members:
For the frames, we are interested in forces and/or moments on the rigid body members. Because this method examines individual members, we can ignore the pin that connects the members and directly consider that adjacent members experience equal and opposite forces at the joints.

$\operatorname{Pin} A$

Pin B

Draw the FBD of the members of the backhoe. The bucket and its contents have
a weight W.

1) Label 2 force members:

Defines single resultant forces along the line of action connecting the end joints
2) ID support reactions
3) other joints have 2 components (x, y) for unknowntorces

Draw the FBD of the members of the backhoe. The bucket and its contents have a weight W.

Draw the FBD of the members of the backhoe. The bucket and its contents have a weight W. MODIFICATION for members connecting ABC. If no \dagger consider as single 3 joint link and rather as two 2-force members, note difference in unknown force vectors on joints
H $\quad C$ and A in FBDs.

The frame supports a 50 kg cylinder. Determine the horizontal and vertical components of reaction at A and the force at C

E Fy: $D_{y}-T=0$

$$
D_{y}=m g
$$

$$
\sum F_{x}: \quad A_{x}-F_{B C}-D_{x}=0
$$

$$
\begin{aligned}
& \sum F_{x}: \\
& \sum F_{y}
\end{aligned}
$$

$$
A_{x}=736 \mathrm{~N}
$$

$$
\sum F_{y}: A_{y}-D_{y}=0
$$

$$
A_{7}=490 \mathrm{~N}
$$

The compound beam shown is pin-connected at l Determine the components of reaction at its supports. Neglect its weight and thickness.

