Statics - TAM 210 & TAM 211

Lecture 21 March 5, 2018 Chap 7.2

Announcements

- □ Upcoming deadlines:
- Monday (3/5)
 - Mastering Engineering Tutorial 8
- Tuesday (3/6)
 - PL HW 6
- Quiz 4 (3/7-9)
 - Sign up at CBTF
 - Up thru and including Lecture 19 (Frames & Machines). Note that quiz and lecture material always builds on earlier fundamental concepts.
- No class Friday March 9, enjoy EOH!

Chapter 7: Internal Forces

Goals and Objectives

- Determine the internal loadings in members using the method of sections
- Generalize this procedure and formulate equations that describe the internal shear and bending moment throughout a member
- Be able to construct or identify shear and bending moment diagrams for beams when distributed loads, concentrated forces, and/or concentrated couple moments are applied

Recap: Internal loadings in structural members Structural Design: need to know the loading acting within the member in order to be sure the material can resist this loading

Cutting members at internal points reveal internal forces and moments. = Use Method of Sections

Procedure for analysis:

- 1. Find support reactions (free-body diagram of entire structure)
- 2. Pass an imaginary section through the member
- 3. Draw a free-body diagram of the segment that has the least number of loads on it
- 4. Apply the equations of equilibrium

Find the internal forces at point C. 3 kip/ft

Use $3E_0E$ to solve for A_y, B_x, B_y . $EF_x \cdot B_x = 0$, $EF_y \cdot A_y + B_y - WL = 0$ $\rightarrow B_y = -6 k_y$ $+9 \ge M_B \cdot (12f_1) WL - (9f_1) A_y = 0 \rightarrow A_y = 24 k_y$ $B_y = -6 k_y$

3unknowns (
$$N_c, V_c, M_c$$
); assuming thow Ay
use $E \circ E$:
 $\sum F_x : N_c = 0$
 $\sum F_5 : A_5 - WL - V_c = 0 \Rightarrow V_c = 6 \ kip$
 $\pm 5 \ge M_c = -(4.5ft)A_5 + (7.5ft)WL = 0$
 $\Rightarrow M_c = -27 \ kip \ ft$

Find the internal forces at point C. 3 kip/ft

Alternatively, could examine right section:
FBD of right section

$$N_{c} \leftarrow \frac{1}{4.5\,f4} = 0$$

 $Sunknums (N_{c}, V_{c}, M_{c})$ assuming
 $K_{now} = 3_{x}, 3_{y}$
 $M_{c} = -27 kip.f4$
 $M_{c} = -27 kip.f4$

Note changes in directions of arrows for By & Mc from original FBDs due to negative values in solutions.

= 0

= 0

c= 6 kip

Find the internal forces and moments at C

Shear and Bending Moment Diagram

<u>Goal</u>: provide detailed knowledge of the variations of internal shear force and bending moments (V and M) throughout a beam when perpendicular distributed loads, concentrated forces, and/or concentrated couple moments are applied.

<u>Procedure</u>

- 1. Find support reactions (free-body diagram of entire structure)
- 2. Specify coordinate *x* (start from left)
- 3. Divide the beam into sections according to loadings
- 4. Draw FBD of a section
- 5. Apply equations of equilibrium to derive V and M as functions of x: V(x), M(x)

Shear and Bending Moment Diagram Draw the shear and bending moment diagrams for the beam.

Shear and Bending Moment Diagram

Draw the shear and bending moment diagrams for the beam.

Shear and Bending Moment Diagram

Draw the shear and bending moment diagrams for the beam. 15 kN

