Statics - TAM 210 \& TAM 211

Lecture 27
March 28, 2018
Chap 8.2

Announcements

\square Concept Inventory: Ungraded assessment of course knowledge
\square Extra credit: Complete \#1 or \#2 for 0.5 out of 100 pt of final grade each, or both for 1.5 out of 100 pt of final grade
\#2: Sign up at CBTF ($4 / 2-4 \mathrm{M}-\mathrm{Th}$)
$\square 50 \mathrm{~min}$ appointment, should take $<30 \mathrm{~min}$
\square Upcoming deadlines:

- Thursday (3/29)
- WA 4 due
- Monday (4/2)
- PL HW 9/11
- Friday (3/30) - Review for exam
- Last lecture for TAM 210 students
- Written exam
- Comprehensive from start of course through today's material
- Thursday 4/5, 7-9pm
- TAM 210 students: 100 Material Science \& Engineering Building (MSEB)
- TAM 211 students: 100 Noyes Lab
- Bring i-Card. No calculators
- Conflict exam \& DRES accommodation exam: Prof. H-W is not taking anymore requests

Chapter 8: Friction

Dry Friction Problems

- 3 types of static problems with dry friction

1. No apparent impending motion
2. Impending motion at all points of contact

3. Impending motion at some points of contact

Note that all of these cases are for IMPENDING motion (since static case). Therefore, in tipping problems, the entire bottom surface is still in contact with ground.

- Procedure
A. Draw FBD for each body
- Friction force points opposite direction of impending motion
B. Determine \# unknowns $\Sigma F_{x} \quad \Sigma F_{y} \Sigma M_{\text {, }}$
C. Apply eqns of equilibrium and necessary frictional eqns (or conditional eqns if tipping is possible)

Recap: Dry friction

- Tipping condition: to avoid tipping of the block, the following equilibrium should be satisfied:

$$
\sum M_{O}=-P h+W x=0 \rightarrow x=\frac{P h}{W}
$$

Compute value for x based on the applied loads: If $x>a / 2$, then these loads would cause tipping. Otherwise $x<a / 2$, will only slip

How many possible motions?
I) 1 slips
III) 1 tips
III) $1+2$ slip
IV) $1+2$ tip

Two uniform boxes, each with weight 200 lb , are simply stacked as shown. If the coefficient of static friction between the boxes is $\mu_{s}=0.8$ and between the box and the floor is $\mu_{s}=0.5$, determine the minimum force P to cause motion.

$$
\begin{aligned}
& +\sum \sum F_{y}: N-W=0, N=W \\
& +\rightarrow \sum F_{x:}: P-F_{s}=0 \\
& \text { assume slipping } F_{s}=\mu_{s} N \\
& P=\mu_{s} N=\mu_{s} W \\
& P=(0.8)(2001 \mathrm{~b}) \\
& P_{I}=16016
\end{aligned}
$$

Assume
Case II: 1 tips $\Rightarrow \therefore x=\frac{9}{2}=1.5 \mathrm{ft}$

$$
\begin{gathered}
+9 \sum M_{0}: W(1.5 \mathrm{ft})-P(1 \mathrm{ft})=0 \\
P=1.5 W=1.5(20016) \\
P_{\text {II }}=30016
\end{gathered}
$$

case III: Assume $1+2$ combo slips

$$
\begin{aligned}
& +\uparrow \sum F_{y}: N-2 w=0 \quad N=2 \omega \\
& \xrightarrow[\rightarrow]{+} F_{x}: P-F_{s}=0 \quad, F_{s}=\mu, N \\
& P=\mu_{s}(2 w)=(0.5)(2)(2001 b) \\
& P_{\text {III }}=2001 b
\end{aligned}
$$

case IU: Assume $1+2$ combs tip, $x=\frac{9}{2}$

$$
\begin{gathered}
+T \sum M_{0}:(2 w)(1.5 \mathrm{ft})-P(5 \mathrm{ft})=0 \\
P=\frac{3}{5} w \\
P_{\text {II }}=120 \mathrm{lb}
\end{gathered}
$$

Case IV will hepper first since $P_{\text {II }}$ is minimum.

Determine the greatest number of books that can be supported in the stack.

Mass of each book: 0.95 kg
Coefficient friction hand-book: $\left(\mu_{s}\right)_{h}=0.8$
Coefficient friction book-book: $\left(\mu_{s}\right)_{b}=0.4$
slipping.

$$
\begin{aligned}
& \sum F_{x}: 120-120=0 \\
& \sum F_{y}: 2 F_{s}-n(\mathrm{mg})=0 \\
& F s=\left(\mu_{s}\right)_{s} N \\
& n=\frac{2(0.4)(120 \mathrm{~N})}{(0.95 \mathrm{~kg})\left(9.81 \mathrm{~m} / s^{2}\right.}=10.3
\end{aligned}
$$

$F B D$. Boots only

$h=10$ books held before slipping

$$
\begin{aligned}
\sum F_{y}: \quad 2 F_{s}^{\prime}-n^{\prime}(m g)=0 \\
F_{s}^{\prime}=\left(\mu_{s}\right)_{n} N \\
n^{\prime}=\frac{2(0.8)(120 N)}{m g}=20.6
\end{aligned}
$$

since $n<n^{\prime}, 10<20$

$$
\begin{aligned}
& <n^{\prime}, 10<20 \\
& \therefore N=n+2=12 \text { books }=n \text { outer books }
\end{aligned}
$$

