Statics - TAM 210 \& TAM 211

Lecture 29
April 2, 2018
Chap 9.1

Announcements

\square No class Wednesday April 4 or Wednesday April 11
\square Concept Inventory: Ungraded assessment of course knowledge
Extra credit: Complete \#1 or \#2 for 0.5 out of 100 pt of final grade each, or both for 1.5 out of 100 pt of final grade
\square \#2: Sign up at CBTF (4/2-4 M-Th)
$\square 50 \mathrm{~min}$ appointment, should take $<30 \mathrm{~min}$
\square Upcoming deadlines:

- Discussion section for (4/3-4/4)
- Attendance taken for TAM 211, no worksheet
- TA/CA answer questions about course material
- TAM 210 students may attend
- Written exam
- Comprehensive from Lecture 1 through Lecture 27 (Chapters 1-8)
- Thursday 4/5, 7-9pm
- TAM 210 students: 100 Material Science \& Engineering Building (MSEB)
- TAM 211 students: 100 Noyes Lab
- Bring i-Card. No calculators
- Closed book, closed notes

Chapter 9: Center of Gravity and Centroid

Goals and Objectives

- Understand the concepts of center of gravity, center of mass, and centroid.
- Determine the location of the center of gravity and centroid for a system of discrete particles and a body of arbitrary shape.

Center of gravity

To design the structure for supporting a water tank, we will need to know the weight of the tank and water as well as the locations where the resultant forces representing these distributed loads act.

How can we determine these resultant weights and their lines of action?

Center of gravity

A body is composed of an infinite number of particles, and so if the body is located within a gravitational field, then each of these particles will have a weight $d W$.

The center of gravity (CG) is a point, often shown as G, which locates the resultant weight of a system of particles or a solid body.

From the definition of a resultant force, the sum of moments due to individual particle weight about any point is the same as the moment due to the resultant weight located at G .
If $d W$ is located at point $(\tilde{x}, \tilde{y}, \tilde{z})$ then $\quad \bar{x}=\frac{\int \tilde{x} d W}{\int d W}$
$\bar{x} W=\int \tilde{x} \mathrm{dW}$
$\bar{y} W=\int \tilde{y} \mathrm{dW}$
$\bar{y}=\frac{\int \tilde{y} d W}{\int d W}$
$\bar{z} W=\int \tilde{z} \mathrm{~d} W$

$$
\bar{z}=\frac{\int \tilde{z} d W}{\int d W}
$$

Center of Mass

Given: $d W=g d m$
Provided that $g=$ constant:

Center of Volume

Center of Area

For homogeneous material, $\rho=$ constant.
Therefore, $d m=\rho d V$

$$
\begin{aligned}
\bar{x} & =\frac{\int \tilde{x} d m}{\int d m} \\
\bar{y} & =\frac{\int \tilde{y} d m}{\int d m} \\
\bar{z} & =\frac{\int \tilde{z} d m}{\int d m}
\end{aligned}
$$

$\bar{x}=\frac{\int \tilde{x} d V}{\int d V}$
$\bar{x}=\frac{\int \tilde{x} d A}{\int d A}$
$\bar{y}=\frac{\int \tilde{y} d V}{\int d V}$
$\bar{y}=\frac{\int \tilde{y} d A}{\int d A}$
$\bar{z}=\frac{\int \tilde{z} d V}{\int d V}$
$\bar{z}=\frac{\int \tilde{z} d A}{\int d A}$
If use rectangular strip,
simplify to $d A=y d x$ and $\tilde{x}=x, \tilde{y}=y / 2$. and $d A=x d y$ and $\tilde{x}=x / 2, \tilde{y}=y$.

Centroid

The centroid, C , is a point defining the geometric center of an object.

The centroid coincides with the center of mass or the center of gravity only if the material of the

Rectangular area

Triangular area

In some cases, the centroid may not be located on the object.

Quarter and semicircle arcs

Centroid of typical 2D shapes

Shape	Figure	\bar{x}	\bar{y}	Area
Right-triangular area		$\frac{b}{3}$	$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area	$\frac{\frac{1}{y}}{4}$	0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area		$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area		0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$

http://en.wikipedia.org/wiki/List_of_centroids

Centroid - Analysis Procedure

1. Select an appropriate coordinate system
2. Define the appropriate element (dL, dA, or dV)
3. Express (2) in terms of the coordinate system
4. Identify any symmetry
5. Express the moment arms (centroid) of (2)
6. Substitute (3) and (4) into the integral and solve

