Statics - TAM 211 Lecture 32 April 9, 2018 Chap 10.1, 10.2, 10.4, 10.8 ### Announcements - ☐ No class Wednesday April 11 - ☐ No office hours for Prof. H-W on Wednesday April 11 - ☐ Upcoming deadlines: - Tuesday (4/10) - PL HW 12 - Thursday (4/12) - WA 5 due - Monday (4/16) - Mastering Engineering Tutorial 14 # Chapter 10: Moments of Inertia # Goals and Objectives - Understand the term "moment" as used in this chapter - Determine and know the differences between - First/second moment of area - Moment of inertia for an area - Polar moment of inertia - Mass moment of inertia - Introduce the parallel-axis theorem. - Be able to compute the moments of inertia of composite areas. I nertia ~ hass, distribution of mass, distribution # Applications Many structural members like beams and columns have cross sectional shapes like an I, H, C, etc. Why do they usually not have solid rectangular, square, or circular cross sectional areas? What primary property of these members influences design decisions? ## Applications Many structural members are made of tubes rather than solid squares or rounds. Why? This section of the book covers some parameters of the cross sectional area that influence the designer's selection. # Recap: First moment of an area (centroid of an area) - The first moment of the area A with respect to the x-axis is given by $Q_{\bullet} = \int_A y \, dA$ - The first moment of the area A with respect to the y axis is given by $Q_{\mathfrak{G}} = \int_A x \, dA$ - The centroid of the area A is defined as the point C of coordinates and, which satisfies the relation $$\int_A x \, dA = A \, \bar{x}$$ $$\int_A y \, dA = A \, \bar{y}$$ $$\int_A y \, dA = A \, \bar{y}$$ In the case of a composite area, we divide the area A into parts $$A_{total} \, \bar{X} = \sum_{i} A_{i} \, \bar{x}_{i} \qquad A_{total} \, \bar{Y} = \sum_{i} A_{i} \, \bar{y}_{i}$$ Terminology: the term **moment** in this module refers to the mathematical sense of different "measures" of an area or volume. - The zeroth moment is the total mass. - The first moment (a single power of position) gave us the centroid. - The second moment will allow us to describe the "width." - An analogy that may help: in *probability* the first moment gives you the mean (the center of the distribution), and the second is the standard deviation (the width of the distribution). ### Second moment of area "Second moment of area" ≈ "Area moment of inertia"; note differences in names, but they both represent the same concept. Moment of inertia is the property of a deformable body that determines the moment needed to obtain a desired curvature about an axis. Moment of inertia depends on the shape of the body and may be different around different axes of rotation. The moment of inertia" The moment of inertia of the area A with respect to the (x) axis is given by $$\int_A y^2 dA$$ The moment of inertia of the area A with respect to the yaxis is given by $$I_{\mathcal{Y}} = \int_{A} x^2 \, dA$$ • The moment of inertia of the area A with respect to the origin O is given by (Polar moment of inertia) $$J_0 = \int_A r^2 dA = \int_A (x^2 + y^2) dA = I_y + I_x$$ Moment-curvature relation: Determine the moment of inertia for the rectangular area shown w.r.t. the centroidal axis x'. $$T_{x'} = \int (y')^{2} dA = \int (y')^{2} (bdy)$$ $$= b \int (y')^{3} dy$$ $$= b \frac{(y')^{3}}{3} \Big|_{\frac{h_{2}}{2}}^{\frac{h_{2}}{2}} = \frac{b}{3} \left(\left(\frac{h}{2} \right)^{3} - \left(\frac{h}{2} \right)^{3} \right)$$ $$T_{x'} = \frac{1}{12} bh^{3}$$ ### Parallel axis theorem - Often, the **moment of inertia** of an area is known for an axis passing through the **centroid**; e.g., x' and y': - The moments around other axes can be computed from the known I_x and $$I_{x} = \int_{\text{area}} (y' + d_{y})^{2} dA$$ $$= \int_{\text{area}} (y')^{2} dA + 2d_{y} \int_{\text{area}} y' dA$$ $$+ d_{y}^{2} \int_{\text{area}} dA$$ $$I_{x} = I_{x'} + Ad_{y}^{2}$$ $$I_{y} = I_{y'} + Ad_{x}^{2}$$ $$I_{O} = J_{C} + A(d_{x}^{2} + d_{y}^{2}) = J_{C} + Ad^{2}$$ **Note:** the integral over y' gives zero when done through the centroid axis. Determine the moment of inertia for the rectangular area shown w.r.t. the axis passing through the base of the rectangle x_b . $$I_{x_{h}} = I_{x'} + A(d_{y})^{2}$$ $$= \frac{1}{(2bh)^{3}} + (bh)(\frac{h}{2})^{2}$$ $$T_{x_b} = \frac{1}{3}bb^3$$ # Area Moments of Inertia for common shapes Ean shuts will be provided in qu. 22es Need to see Quiz O for how to access attached documents at CBTF ## Moment of inertia of composite - If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions. - This requires the **parallel axis theorem** - Remember: - The position of the centroid of each component **must** be defined with respect to the **same origin**. - It is allowed to consider **negative areas** in these expressions. Negative areas correspond to holes/missing area. **This is the one** occasion to have negative moment of inertia. Determine the moment of inertia for the shaded area about the x-axis About centroidal axis? No. > about x $$I_{x} = \overline{I}_{x_{0}} - \overline{I}_{x_{0}}$$ $$= \frac{1}{3}bb^{3} - \left[\overline{I}_{x'_{0}} + A_{0}d^{2}\right]$$ $$= \frac{1}{3}bb^{3} - \left[\frac{1}{4\pi}r^{4} + (\pi r^{2})d^{2}\right]$$ # Mass Moment of Inertia - Mass moment of inertia is the mass property of a rigid body that determines the torque T needed for a desired angular acceleration (α) about an axis of rotation. - A larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis - Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation. uaf.edu/webproj/211 fall 2014/Ari ### Mass Moment of Inertia Torque-acceleration relation: $T = I \alpha$ $r = I \alpha$ where the mass moment of inertia is defined as $$I_{zz} = \int \rho \, r^2 dV$$ $$I_{zz} = \int r^2 \, dm \, , \, \text{if constant } \rho$$ $$I_{zz} = \int \rho r^2 dv = \int_0^t \int_0^{2\pi} \int_0^R \rho r^2 (r dr d\theta dz)$$ $$= \rho \int_0^t \int_0^{2\pi} \frac{r^4}{4} d\theta dz$$ $$= \rho \int_0^t \frac{r^4}{2} \pi dz = \rho \frac{r^4}{2} \pi t = \frac{r^2}{2} \rho \pi r^2 t = \frac{r^2}{2} \rho V = \frac{r^2}{2} M$$ Thin Circular disk $I_{xx} = I_{yy} = \frac{1}{4} mr^2 \quad I_{zz} = \frac{1}{2} mr^2 \quad I_{z'z'} = \frac{3}{2} mr^2$ From inside back cover of Hibbler textbook ### Center of Gravity and Mass Moment of Inertia of Homogeneous Solids - $V=\pi r^2 h$ $\begin{aligned} & \text{Cylinder} \\ I_{xx} &= I_{yy} = \frac{1}{12} \, m (3 r^2 + h^2) \quad I_{zz} = \frac{1}{2} \, m r^2 \end{aligned}$ $I_{xx} = I_{yy} = I_{zz} = \frac{2}{5} mr^2$ $V = \{\pi_I \}$ $V = \frac{2}{3}\pi r$ Cone $I_{xx} = I_{yy} = \frac{3}{80} m (4r^2 + h^2) \ I_{zz} = \frac{3}{10} mr^2$ Hemisphere $I_{xz} = I_{yy} = 0.259 mr^2 \ I_{zz} = \tfrac{2}{3} mr^2$ Thin Circular disk $I_{xx} = \tfrac{1}{12} \ mb^2 \quad I_{yy} = \tfrac{1}{12} \ ma^2 \quad I_{zz} = \tfrac{1}{12} \ m(a^2 + b^2)$ $I_{xx} = I_{yy} = \tfrac{1}{4} \, m r^2 \quad I_{zz} = \tfrac{1}{2} m r^2 \quad I_{zz} = \tfrac{3}{2} \, m r^2$ X Slender Rod Thin ring $I_{xx}=I_{yy}=\tfrac{1}{2}mr^2 \quad I_{zz}=mr^2$ $I_{xx} = I_{yy} = \frac{1}{12} \, \text{m} \, \ell^2 \cdot I_{x(x)} = I_{y(y)} = \frac{1}{3} \, \text{m} \, \ell^2 \cdot I_{z(z)} = 0$ ### English units (inches) | | | | A | Depth W | 310 J. 2 | Axis X-X | | | Axis Y-Y | | | |---|----------------------------------|--|--|------------------------------|------------------------------|--|--|--|---|---|--| | | | Designation | Area
in ² | in. | in. | \overline{I}_x , in ⁴ | \overline{k}_{x} , in. | \overline{y} , in. | \overline{I}_y , in4 | $\overline{k}_{\mathrm{y}}$, in. | \overline{x} , in. | | W Shapes
(Wide-Flange
Shapes) | X X X | W18 × 76†
W16 × 57
W14 × 38
W8 × 31 | 22.3
16.8
11.2
9.12 | 18.2
16.4
14.1
8.00 | 11.0
7.12
6.77
8.00 | 1330
758
385
110 | 7.73
6.72
5.87
3.47 | | 152
43.1
26.7
37.1 | 2.61
1.60
1.55
2.02 | | | S Shapes
(American Standard
Shapes) | x x | \$18 × 54.7†
\$12 × 31.8
\$10 × 25.4
\$6 × 12.5 | 16.0
9.31
7.45
3.66 | 18.0
12.0
10.0
6.00 | 6.00
5.00
4.66
3.33 | 801
217
123
22.0 | 7.07
4.83
4.07
2.45 | | 20.7
9.33
6.73
1.80 | 1.14
1.00
0.980
0.702 | | | C Shapes
(American Standard
Channels) | $X \longrightarrow \overline{X}$ | C12×20.7†
C10×15.3
C8×11.5
C6×8.2 | 6.08
4.48
3.37
2.39 | 12.0
10.0
8.00
6.00 | 2.94
2.60
2.26
1.92 | 129
67.3
32.5
13.1 | 4.61
3.87
3.11
2.34 | | 3.86
2.27
1.31
0.687 | 0.797
0.711
0.623
0.536 | 0.698
0.634
0.572
0.512 | | Angles X | <u></u> | L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L5×3×½ L3×2×¼ | 11.0
3.75
1.44
4.75
3.75
1.19 | | | 35.4
5.52
1.23
17.3
9.43
1.09 | 1.79
1.21
0.926
1.91
1.58
0.963 | 1.86
1.18
0.836
1.98
1.74
0.980 | 35.4
5.52
1.23
6.22
2.55
0.390 | 1.79
1.21
0.926
1.14
0.824
0.569 | 1.86
1.18
0.836
0.981
0.746
0.487 | Metric units (mm) | | Metric units (mm) | | | | | | | | | | | | |--|--|-------------------|--|--|--------------------------|------------------------------|--|--|--|--|--|--| | | | | | | | Axts X-X | | | Axis Y-Y | | | | | | | | Designation | Area
mm² | Depth
mm | Width
mm | \(\overline{I}_x\) 106 mm ⁴ | \overline{k}_{x} mm | y
mm | \overline{I}_y $10^6\mathrm{mm}^4$ | \overline{k}_{y} mm | ⊤
mm | | | W Shapes (Wide-Flange Shapes) X | Y | W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1 | 14400
10900
7230
5880 | 462
417
358
203 | 279
181
172
203 | 884
316
160
45.8 | 196
171
149
88.1 | | 63.3
17.9
11.1
15.4 | 66.3
40.6
39.4
51.3 | | | | S Shapes
(American Standard
Shapes)
X | x
Y | S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6 | 10300
6010
4810
2360 | 457
305
254
152 | 152
127
118
84.6 | 333
90.3
51.2
9.16 | 180
123
103
62.2 | | 8.62
3.88
2.80
0.749 | 29.0
25.4
24.1
17.8 | | | | C Shapes
(American Standard
Channels)
X | X | C310 × 30.8†
C250 × 22.8
C200 × 17.1
C150 × 12.2 | 3920
2890
2170
1540 | 305
254
203
152 | 74.7
66.0
57.4
48.8 | 53.7
28.0
13.5
5.45 | 117
98.3
79.0
59.4 | | 1.61
0.945
0.545
0.286 | 20.2
18.1
15.8
13.6 | 17.7
16.1
14.5
13.0 | | | Angles X | $\frac{1}{y}$ X | L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4 | 7100
2420
929
3060
2420
768 | | | 14.7
2.30
0.512
7.20
3.93
0.454 | 45.5
30.7
23.5
48.5
40.1
24.2 | 47.2
30.0
21.2
50.3
44.2
24.9 | 14.7
2.30
0.512
2.59
1.06
0.162 | 45.5
30.7
23.5
29.0
20.9
14.5 | 47.2
30.0
21.2
24.9
18.9
12.4 |