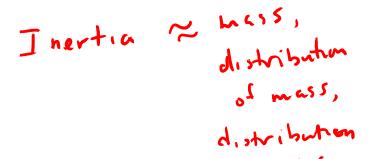
# Statics - TAM 211

Lecture 34

(no lecture 33)

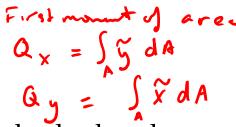
April 13, 2018

Chap 10.1, 10.2, 10.4, 10.8, Chap 5.5-5.6


# Announcements

- Quiz 6 and Written Assignment 6 scheduling conflict
  - ☐ What Piazza for scheduling announcements
- □ Upcoming deadlines:
  - Monday (4/16)
    - Mastering Engineering Tutorial 14
  - Tuesday (4/17)
    - PL HW 13
  - Quiz 6
  - Written Assignment 6

# Chapter 10: Moments of Inertia


# Goals and Objectives

- Understand the term "moment" as used in this chapter
- Determine and know the differences between
  - First/second moment of area
  - Moment of inertia for an area
  - Polar moment of inertia
  - Mass moment of inertia
- Introduce the parallel-axis theorem.
- Be able to compute the moments of inertia of composite areas.



# Second moment of area

"Second moment of area" ≈ "Area moment of inertia"; note differences in names, but they both represent the same concept.

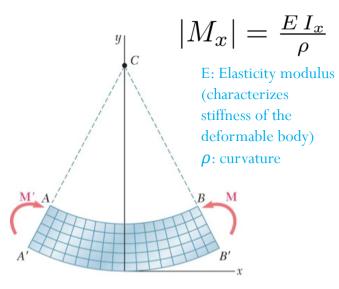


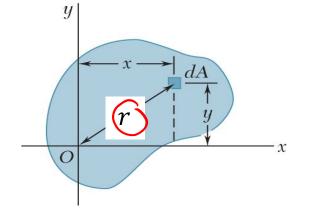
Moment of inertia is the property of a deformable body that determines the moment needed to obtain a desired curvature about an axis.

Moment of inertia depends on the shape of the body and may be different around different axes of rotation.

• The moment of inertia" respect to the (x) axis is given by

$$\int_A y^2 dA$$


• The moment of inertia of the area A with respect to the vaxis is given by


$$I_{\mathcal{G}} = \int_A x^2 dA$$

The moment of inertia of the area A with respect to the origin O is given by (Polar moment of inertia)

$$J_0 = \int_A \sqrt{2} dA = \int_A (x^2 + y^2) dA = I_y + I_x$$

Moment-curvature relation:

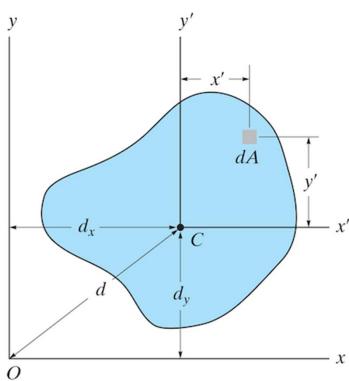




# Parallel axis theorem

- Often, the **moment of inertia** of an area is known for an axis passing through the **centroid**; e.g., x' and y':
- The moments around other axes can be computed from the known  $I_x$  and

$$I_{x} = \int_{\text{area}} (y' + d_{y})^{2} dA$$


$$= \int_{\text{area}} (y')^{2} dA + 2d_{y} \int_{\text{area}} y' dA$$

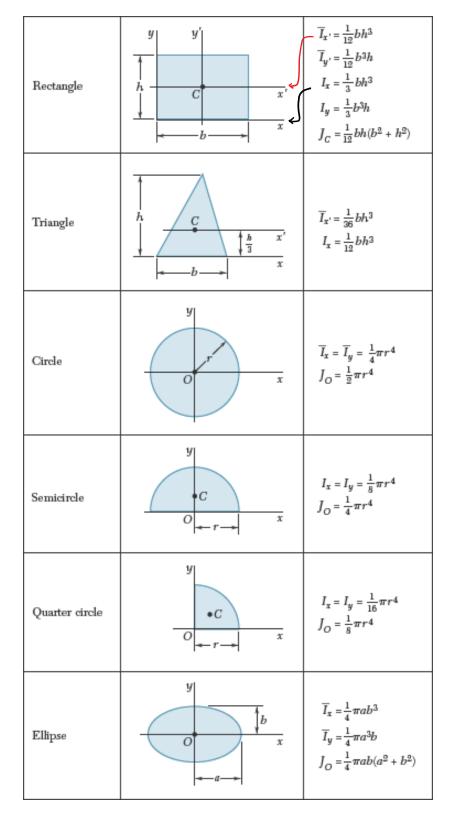
$$+ d_{y}^{2} \int_{\text{area}} dA$$

$$I_{x} = I_{x'} + Ad_{y}^{2}$$

$$I_{y} = I_{y'} + Ad_{x}^{2}$$

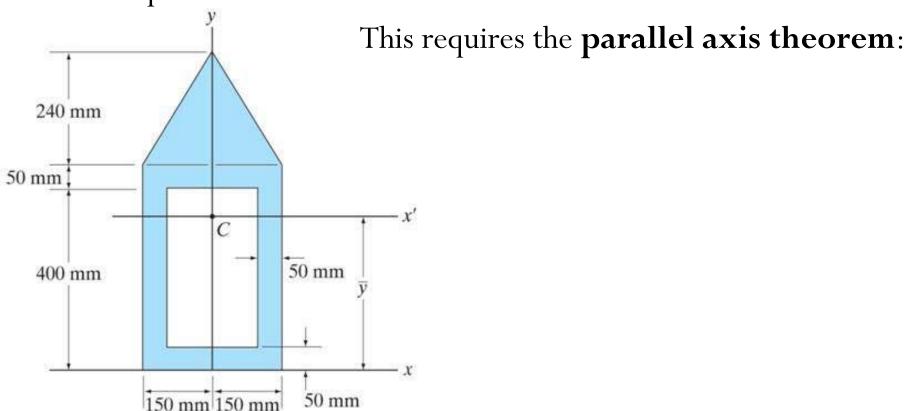
$$I_{O} = J_{C} + A(d_{x}^{2} + d_{y}^{2}) = J_{C} + Ad^{2}$$




**Note:** the integral over y' gives zero when done through the centroid axis.

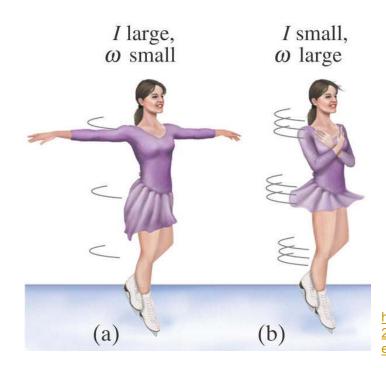
# From inside back cover of Hibbler textbook

### Geometric Properties of Line and Area Elements

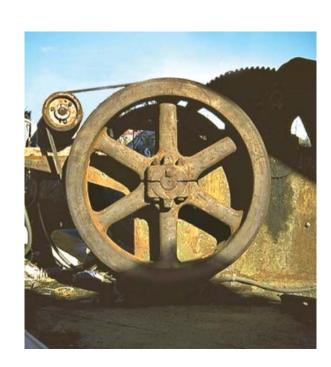

# Centroid Location Area Moment of Inertia Centroid Location Circular arc segment Circular sector area Quarter and semicircle arcs Quarter circle area Trapezoidal area Semicircular area $I_{y} = \frac{1}{4}\pi r^{4}$ Semiparabolic area Circular area Exparabolic area Rectangular area Parabolic area Triangular area

# Area Moments of Inertia for common shapes




# Moment of inertia of composite

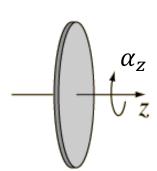
• If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions.




# Mass Moment of Inertia

- **Mass moment of inertia** is the mass property of a rigid body that determines the torque T needed for a desired angular acceleration ( $\alpha$ ) about an axis of rotation.
- A larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis
- Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation.







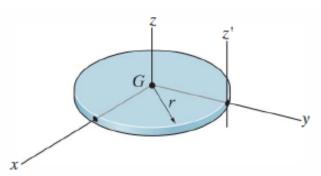

# Mass Moment of Inertia

Torque-acceleration relation:  $T = I \alpha$ 

where the mass moment of inertia is defined as

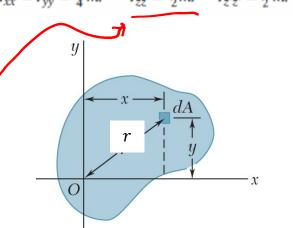


$$I_{zz} = \int \rho \, r^2 \, dV$$


$$I_{zz} = \int r^2 \, dm \, , \text{ if constant } \rho$$

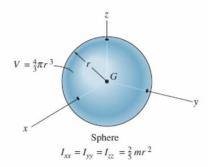


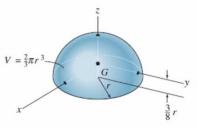
$$I_{zz} = \int \rho r^2 dv = \int_0^t \int_0^{2\pi} \int_0^R \rho r^2 (r dr d\theta dz)$$


$$= \rho \int_0^t \int_0^{2\pi} \frac{r^4}{4} d\theta dz$$

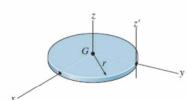
$$= \rho \int_0^t \frac{r^4}{2} \pi dz = \rho \frac{r^4}{2} \pi t = \frac{r^2}{2} \rho \pi r^2 t = \frac{r^2}{2} \rho V = \frac{r^2}{2} M$$



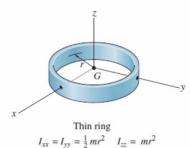

Thin Circular disk

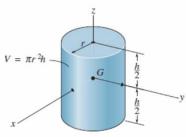

$$I_{xx} = I_{yy} = \frac{1}{4} mr^2$$
  $I_{zz} = \frac{1}{2} mr^2$   $I_{z'z'} = \frac{3}{2} mr^2$ 



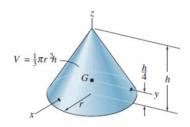

### Center of Gravity and Mass Moment of Inertia of Homogeneous Solids

From inside back cover of Hibbler textbook

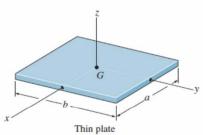


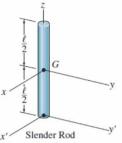

Hemisphere  $I_{xx} = I_{yy} = 0.259mr^2 \quad I_{zz} = \frac{2}{5}mr^2$ 




Thin Circular disk  $I_{xx}=I_{yy}=\tfrac{1}{4}mr^2 \quad I_{zz}=\tfrac{1}{2}mr^2 \quad I_{z'z'}=\tfrac{3}{2}mr^2$ 







 $\begin{aligned} & \text{Cylinder} \\ I_{xx} = I_{yy} = \frac{1}{12} \, m (3 \, r^2 + h^2) \quad I_{zz} = \frac{1}{2} \, m r^2 \end{aligned}$ 

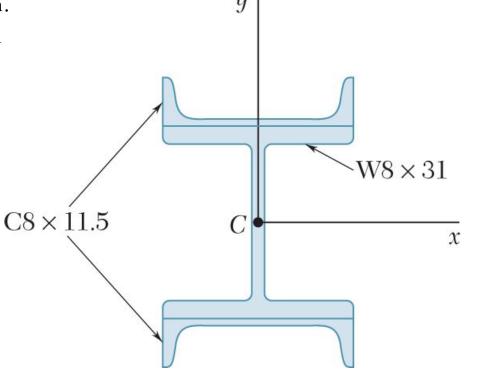


Cone  $I_{xx} = I_{yy} = \frac{3}{80} m (4r^2 + h^2) I_{zz} = \frac{3}{10} mr^2$ 




$$I_{xx} = \tfrac{1}{12} \ mb^2 \quad I_{yy} = \tfrac{1}{12} \ ma^2 \quad I_{zz} = \tfrac{1}{12} \ m(a^2 + b^2)$$




$$I_{xx} = I_{yy} = \, \tfrac{1}{12} \, m \, \ell^{\,\, 2} \ \, I_{x'x'} = \, I_{y'y'} = \, \tfrac{1}{3} \, m \, \ell^{\,\, 2} \ \, I_{z'z'} = 0$$

Find the moment of inertia of the shape about its centroid:



Determine the moment of inertia for the cross-sectional area about the *x* and *y* 100 mm centroidal axes. 400 mm 100 mm200 mm 400 mm 100 mm 300 mm  $250 \, \text{mm}_{1}$ **←**100 mm 600 mm 250 mm 300 mm D200 mm -100 mm

Two channels are welded to a rolled W section as shown. Determine the area moments of inertia of the combined section with respect to the centroidal x and y axes.



# English units (inches)

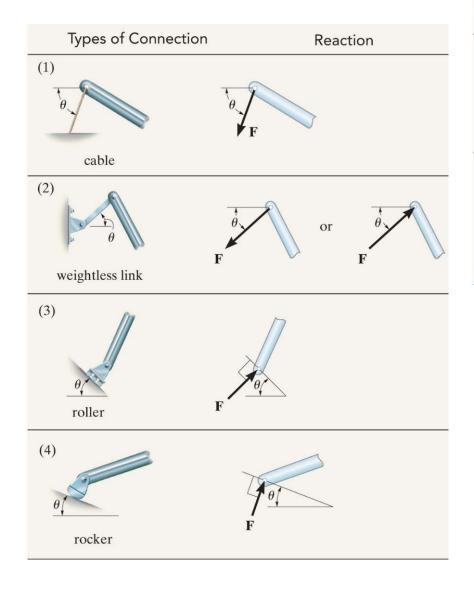
|                                             |                       |                                                          | Arra                                         | Dreib                        | 310 3.1                      | Axis X-X                                     |                                                |                                                | Axis Y-Y                                      |                                                 |                                                  |
|---------------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------------|------------------------------|------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------------------------|
|                                             |                       | Area<br>Designation in <sup>2</sup>                      |                                              | Depth<br>in.                 | in.                          | $\overline{I}_x$ , in <sup>4</sup>           | $\overline{k}_{x}$ , in.                       | $\overline{y}$ , in.                           | $\overline{I}_y$ , in <sup>4</sup>            | $\overline{k}_{\mathrm{y}}$ , in.               | $\overline{x}$ , in.                             |
| W Shapes<br>(Wide-Flange<br>Shapes)         | X X X                 | W18 × 76†<br>W16 × 57<br>W14 × 38<br>W8 × 31             | 22.3<br>16.8<br>11.2<br>9.12                 | 18.2<br>16.4<br>14.1<br>8.00 | 11.0<br>7.12<br>6.77<br>8.00 | 1330<br>758<br>385<br>110                    | 7.73<br>6.72<br>5.87<br>3.47                   |                                                | 152<br>43.1<br>26.7<br>37.1                   | 2.61<br>1.60<br>1.55<br>2.02                    |                                                  |
| S Shapes<br>(American Standard<br>Shapes)   | X X                   | \$18 × 54.7†<br>\$12 × 31.8<br>\$10 × 25.4<br>\$6 × 12.5 | 16.0<br>9.31<br>7.45<br>3.66                 | 18.0<br>12.0<br>10.0<br>6.00 | 6.00<br>5.00<br>4.66<br>3.33 | 801<br>217<br>123<br>22.0                    | 7.07<br>4.83<br>4.07<br>2.45                   |                                                | 20.7<br>9.33<br>6.73<br>1.80                  | 1.14<br>1.00<br>0.980<br>0.702                  |                                                  |
| C Shapes<br>(American Standard<br>Channels) | $X \longrightarrow X$ | C12 × 20.7†<br>C10 × 15.3<br>C8 × 11.5<br>C6 × 8.2       | 6.08<br>4.48<br>3.37<br>2.39                 | 12.0<br>10.0<br>8.00<br>6.00 | 2.94<br>2.60<br>2.26<br>1.92 | 129<br>67.3<br>32.5<br>13.1                  | 4.61<br>3.87<br>3.11<br>2.34                   |                                                | 3.86<br>2.27<br>1.31<br>0.687                 | 0.797<br>0.711<br>0.623<br>0.536                | 0.698<br>0.634<br>0.572<br>0.512                 |
| Angles X                                    | <u></u> x             | L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L5×3×½ L3×2×¼        | 11.0<br>3.75<br>1.44<br>4.75<br>3.75<br>1.19 |                              |                              | 35.4<br>5.52<br>1.23<br>17.3<br>9.43<br>1.09 | 1.79<br>1.21<br>0.926<br>1.91<br>1.58<br>0.963 | 1.86<br>1.18<br>0.836<br>1.98<br>1.74<br>0.980 | 35.4<br>5.52<br>1.23<br>6.22<br>2.55<br>0.390 | 1.79<br>1.21<br>0.926<br>1.14<br>0.824<br>0.569 | 1.86<br>1.18<br>0.836<br>0.981<br>0.746<br>0.487 |

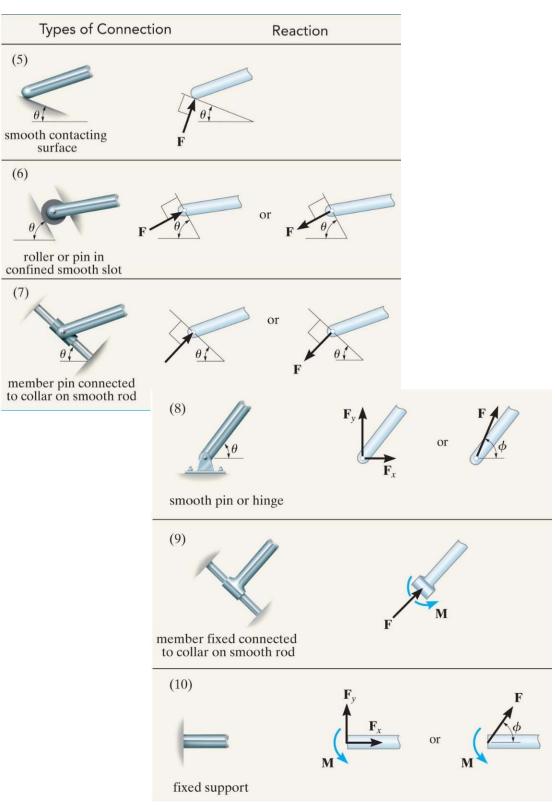
## Metric units (mm)

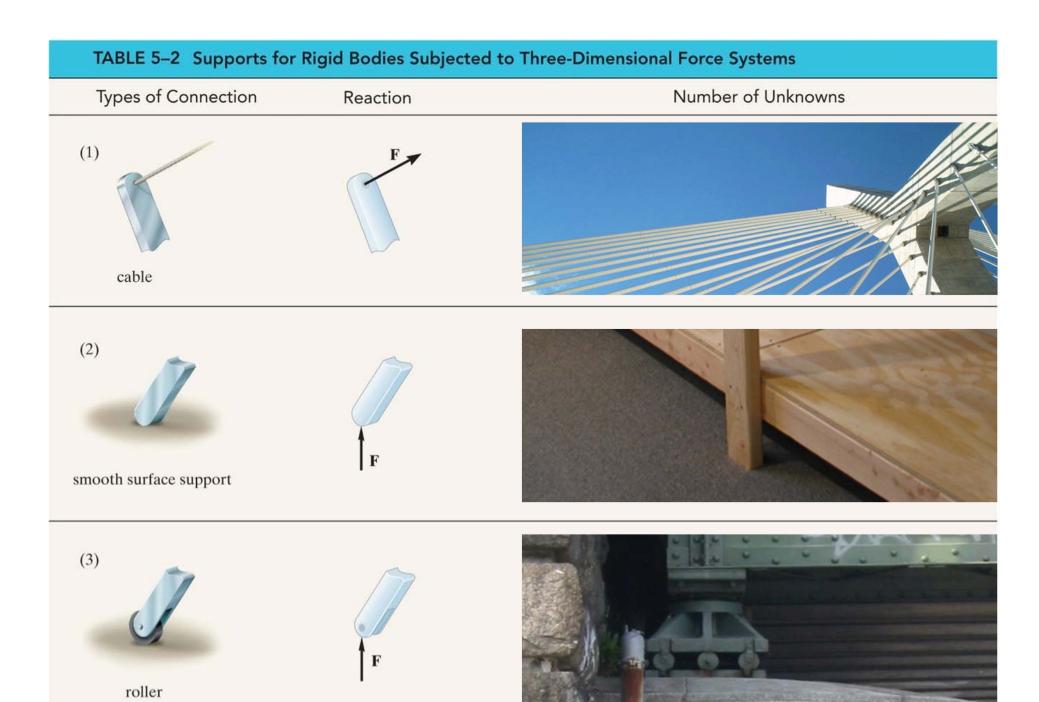
|                                             |                               |                                                                                                                      |                                |                          |                              | Axds X-X                                       |                                              |                                              | Axis Y-Y                                       |                                              |                                              |
|---------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                             |                               | Designation                                                                                                          | Area<br>mm²                    | Depth<br>mm              | Width<br>mm                  | \( \overline{I}_x\) 106 mm <sup>4</sup>        | $\overline{k}_x$ mm                          | <i>y</i><br>mm                               | 100 mm4                                        | $\overline{k}_{y}$ mm                        | mm                                           |
| W Shapes<br>(Wide-Flange<br>Shapes)         | X—X                           | W460 × 113†<br>W410 × 85<br>W360 × 57.8<br>W200 × 46.1                                                               | 14400<br>10800<br>7230<br>5880 | 462<br>417<br>358<br>203 | 279<br>181<br>172<br>203     | 554<br>316<br>160<br>45.8                      | 196<br>171<br>149<br>88.1                    |                                              | 63.3<br>17.9<br>11.1<br>15.4                   | 66.3<br>40.6<br>39.4<br>51.3                 |                                              |
| S Shapes<br>(American Standard<br>Shapes)   | x x                           | S460 × 81.4†<br>S310 × 47.3<br>S250 × 37.8<br>S150 × 18.6                                                            | 10300<br>6010<br>4810<br>2360  | 457<br>305<br>254<br>152 | 152<br>127<br>118<br>84.6    | 333<br>90.3<br>51.2<br>9.16                    | 180<br>123<br>103<br>62.2                    |                                              | 8.62<br>3.88<br>2.80<br>0.749                  | 29.0<br>25.4<br>24.1<br>17.8                 |                                              |
| C Shapes<br>(American Standard<br>Channels) | $X \xrightarrow{Y} X$         | C310 × 30.8†<br>C250 × 22.8<br>C200 × 17.1<br>C150 × 12.2                                                            | 3920<br>2890<br>2170<br>1540   | 305<br>254<br>203<br>152 | 74.7<br>66.0<br>57.4<br>48.8 | 53.7<br>28.0<br>13.5<br>5.45                   | 117<br>98.3<br>79.0<br>59.4                  |                                              | 1.61<br>0.945<br>0.545<br>0.296                | 20.2<br>18.1<br>15.8<br>13.6                 | 17.7<br>16.1<br>14.5<br>13.0                 |
| Angles  X                                   | $\overline{\overline{y}}$ $X$ | L152 × 152 × 25.4‡<br>L102 × 102 × 12.7<br>L76 × 76 × 6.4<br>L152 × 102 × 12.7<br>L127 × 76 × 12.7<br>L76 × 51 × 6.4 |                                |                          |                              | 14.7<br>2.30<br>0.512<br>7.20<br>3.93<br>0.454 | 45.5<br>30.7<br>23.5<br>48.5<br>40.1<br>24.2 | 47.2<br>30.0<br>21.2<br>50.3<br>44.2<br>24.9 | 14.7<br>2.30<br>0.512<br>2.59<br>1.06<br>0.162 | 45.5<br>30.7<br>23.5<br>29.0<br>20.9<br>14.5 | 47.2<br>30.0<br>21.2<br>24.9<br>18.9<br>12.4 |

# Chapter 5 Part II – 3-D Rigid Body

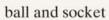
Chap 5.5-5.6


# Equilibrium of a rigid body



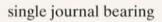


Now we add the z-axis to the coordinate system!

How many Equations of Equilibriums?


# Types of 2D connectors (5)

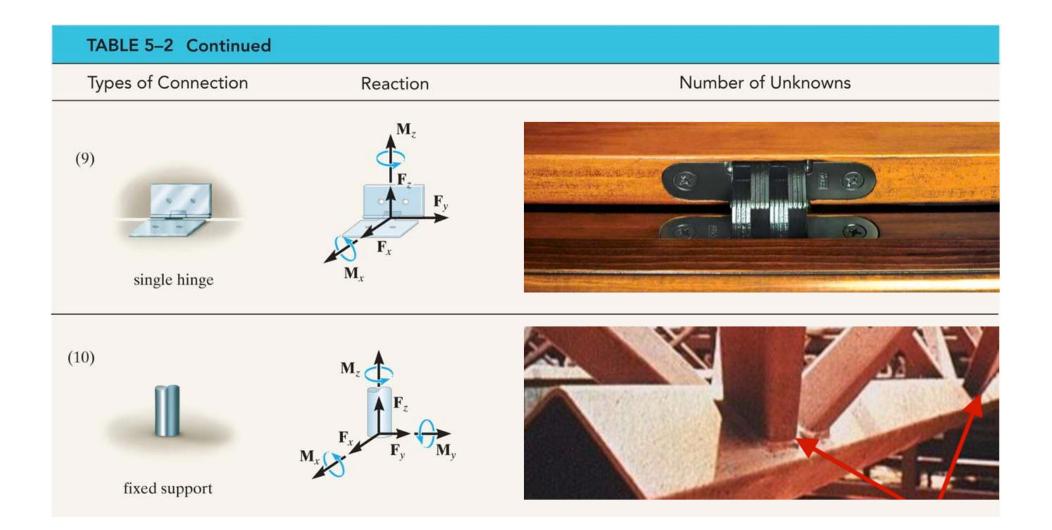







# TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems Types of Connection Reaction Number of Unknowns (4) Fz




(5)







# TABLE 5-2 Continued Types of Connection Number of Unknowns Reaction (6) single journal bearing with square shaft (7) single thrust bearing (8) single smooth pin

