Statics - TAM 211 Lecture 34 (no lecture 33) April 13, 2018 Chap 10.1, 10.2, 10.4, 10.8, Chap 5.5-5.6 # Announcements - Quiz 6 and Written Assignment 6 scheduling conflict - ☐ What Piazza for scheduling announcements - □ Upcoming deadlines: - Monday (4/16) - Mastering Engineering Tutorial 14 - Tuesday (4/17) - PL HW 13 - Quiz 6 - Written Assignment 6 # Chapter 10: Moments of Inertia # Goals and Objectives - Understand the term "moment" as used in this chapter - Determine and know the differences between - First/second moment of area - Moment of inertia for an area - Polar moment of inertia - Mass moment of inertia - Introduce the parallel-axis theorem. - Be able to compute the moments of inertia of composite areas. # Second moment of area "Second moment of area" ≈ "Area moment of inertia"; note differences in names, but they both represent the same concept. Moment of inertia is the property of a deformable body that determines the moment needed to obtain a desired curvature about an axis. Moment of inertia depends on the shape of the body and may be different around different axes of rotation. • The moment of inertia" respect to the (x) axis is given by $$\int_A y^2 dA$$ • The moment of inertia of the area A with respect to the vaxis is given by $$I_{\mathcal{G}} = \int_A x^2 dA$$ The moment of inertia of the area A with respect to the origin O is given by (Polar moment of inertia) $$J_0 = \int_A \sqrt{2} dA = \int_A (x^2 + y^2) dA = I_y + I_x$$ Moment-curvature relation: # Parallel axis theorem - Often, the **moment of inertia** of an area is known for an axis passing through the **centroid**; e.g., x' and y': - The moments around other axes can be computed from the known I_x and $$I_{x} = \int_{\text{area}} (y' + d_{y})^{2} dA$$ $$= \int_{\text{area}} (y')^{2} dA + 2d_{y} \int_{\text{area}} y' dA$$ $$+ d_{y}^{2} \int_{\text{area}} dA$$ $$I_{x} = I_{x'} + Ad_{y}^{2}$$ $$I_{y} = I_{y'} + Ad_{x}^{2}$$ $$I_{O} = J_{C} + A(d_{x}^{2} + d_{y}^{2}) = J_{C} + Ad^{2}$$ **Note:** the integral over y' gives zero when done through the centroid axis. # From inside back cover of Hibbler textbook ### Geometric Properties of Line and Area Elements # Centroid Location Area Moment of Inertia Centroid Location Circular arc segment Circular sector area Quarter and semicircle arcs Quarter circle area Trapezoidal area Semicircular area $I_{y} = \frac{1}{4}\pi r^{4}$ Semiparabolic area Circular area Exparabolic area Rectangular area Parabolic area Triangular area # Area Moments of Inertia for common shapes # Moment of inertia of composite • If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions. # Mass Moment of Inertia - **Mass moment of inertia** is the mass property of a rigid body that determines the torque T needed for a desired angular acceleration (α) about an axis of rotation. - A larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis - Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation. # Mass Moment of Inertia Torque-acceleration relation: $T = I \alpha$ where the mass moment of inertia is defined as $$I_{zz} = \int \rho \, r^2 \, dV$$ $$I_{zz} = \int r^2 \, dm \, , \text{ if constant } \rho$$ $$I_{zz} = \int \rho r^2 dv = \int_0^t \int_0^{2\pi} \int_0^R \rho r^2 (r dr d\theta dz)$$ $$= \rho \int_0^t \int_0^{2\pi} \frac{r^4}{4} d\theta dz$$ $$= \rho \int_0^t \frac{r^4}{2} \pi dz = \rho \frac{r^4}{2} \pi t = \frac{r^2}{2} \rho \pi r^2 t = \frac{r^2}{2} \rho V = \frac{r^2}{2} M$$ Thin Circular disk $$I_{xx} = I_{yy} = \frac{1}{4} mr^2$$ $I_{zz} = \frac{1}{2} mr^2$ $I_{z'z'} = \frac{3}{2} mr^2$ ### Center of Gravity and Mass Moment of Inertia of Homogeneous Solids From inside back cover of Hibbler textbook Hemisphere $I_{xx} = I_{yy} = 0.259mr^2 \quad I_{zz} = \frac{2}{5}mr^2$ Thin Circular disk $I_{xx}=I_{yy}=\tfrac{1}{4}mr^2 \quad I_{zz}=\tfrac{1}{2}mr^2 \quad I_{z'z'}=\tfrac{3}{2}mr^2$ $\begin{aligned} & \text{Cylinder} \\ I_{xx} = I_{yy} = \frac{1}{12} \, m (3 \, r^2 + h^2) \quad I_{zz} = \frac{1}{2} \, m r^2 \end{aligned}$ Cone $I_{xx} = I_{yy} = \frac{3}{80} m (4r^2 + h^2) I_{zz} = \frac{3}{10} mr^2$ $$I_{xx} = \tfrac{1}{12} \ mb^2 \quad I_{yy} = \tfrac{1}{12} \ ma^2 \quad I_{zz} = \tfrac{1}{12} \ m(a^2 + b^2)$$ $$I_{xx} = I_{yy} = \, \tfrac{1}{12} \, m \, \ell^{\,\, 2} \ \, I_{x'x'} = \, I_{y'y'} = \, \tfrac{1}{3} \, m \, \ell^{\,\, 2} \ \, I_{z'z'} = 0$$ Find the moment of inertia of the shape about its centroid: Determine the moment of inertia for the cross-sectional area about the *x* and *y* 100 mm centroidal axes. 400 mm 100 mm200 mm 400 mm 100 mm 300 mm $250 \, \text{mm}_{1}$ **←**100 mm 600 mm 250 mm 300 mm D200 mm -100 mm Two channels are welded to a rolled W section as shown. Determine the area moments of inertia of the combined section with respect to the centroidal x and y axes. # English units (inches) | | | | Arra | Dreib | 310 3.1 | Axis X-X | | | Axis Y-Y | | | |---|-----------------------|--|--|------------------------------|------------------------------|--|--|--|---|---|--| | | | Area
Designation in ² | | Depth
in. | in. | \overline{I}_x , in ⁴ | \overline{k}_{x} , in. | \overline{y} , in. | \overline{I}_y , in ⁴ | $\overline{k}_{\mathrm{y}}$, in. | \overline{x} , in. | | W Shapes
(Wide-Flange
Shapes) | X X X | W18 × 76†
W16 × 57
W14 × 38
W8 × 31 | 22.3
16.8
11.2
9.12 | 18.2
16.4
14.1
8.00 | 11.0
7.12
6.77
8.00 | 1330
758
385
110 | 7.73
6.72
5.87
3.47 | | 152
43.1
26.7
37.1 | 2.61
1.60
1.55
2.02 | | | S Shapes
(American Standard
Shapes) | X X | \$18 × 54.7†
\$12 × 31.8
\$10 × 25.4
\$6 × 12.5 | 16.0
9.31
7.45
3.66 | 18.0
12.0
10.0
6.00 | 6.00
5.00
4.66
3.33 | 801
217
123
22.0 | 7.07
4.83
4.07
2.45 | | 20.7
9.33
6.73
1.80 | 1.14
1.00
0.980
0.702 | | | C Shapes
(American Standard
Channels) | $X \longrightarrow X$ | C12 × 20.7†
C10 × 15.3
C8 × 11.5
C6 × 8.2 | 6.08
4.48
3.37
2.39 | 12.0
10.0
8.00
6.00 | 2.94
2.60
2.26
1.92 | 129
67.3
32.5
13.1 | 4.61
3.87
3.11
2.34 | | 3.86
2.27
1.31
0.687 | 0.797
0.711
0.623
0.536 | 0.698
0.634
0.572
0.512 | | Angles X | <u></u> x | L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L5×3×½ L3×2×¼ | 11.0
3.75
1.44
4.75
3.75
1.19 | | | 35.4
5.52
1.23
17.3
9.43
1.09 | 1.79
1.21
0.926
1.91
1.58
0.963 | 1.86
1.18
0.836
1.98
1.74
0.980 | 35.4
5.52
1.23
6.22
2.55
0.390 | 1.79
1.21
0.926
1.14
0.824
0.569 | 1.86
1.18
0.836
0.981
0.746
0.487 | ## Metric units (mm) | | | | | | | Axds X-X | | | Axis Y-Y | | | |---|-------------------------------|--|--------------------------------|--------------------------|------------------------------|--|--|--|--|--|--| | | | Designation | Area
mm² | Depth
mm | Width
mm | \(\overline{I}_x\) 106 mm ⁴ | \overline{k}_x mm | <i>y</i>
mm | 100 mm4 | \overline{k}_{y} mm | mm | | W Shapes
(Wide-Flange
Shapes) | X—X | W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1 | 14400
10800
7230
5880 | 462
417
358
203 | 279
181
172
203 | 554
316
160
45.8 | 196
171
149
88.1 | | 63.3
17.9
11.1
15.4 | 66.3
40.6
39.4
51.3 | | | S Shapes
(American Standard
Shapes) | x x | S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6 | 10300
6010
4810
2360 | 457
305
254
152 | 152
127
118
84.6 | 333
90.3
51.2
9.16 | 180
123
103
62.2 | | 8.62
3.88
2.80
0.749 | 29.0
25.4
24.1
17.8 | | | C Shapes
(American Standard
Channels) | $X \xrightarrow{Y} X$ | C310 × 30.8†
C250 × 22.8
C200 × 17.1
C150 × 12.2 | 3920
2890
2170
1540 | 305
254
203
152 | 74.7
66.0
57.4
48.8 | 53.7
28.0
13.5
5.45 | 117
98.3
79.0
59.4 | | 1.61
0.945
0.545
0.296 | 20.2
18.1
15.8
13.6 | 17.7
16.1
14.5
13.0 | | Angles X | $\overline{\overline{y}}$ X | L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4 | | | | 14.7
2.30
0.512
7.20
3.93
0.454 | 45.5
30.7
23.5
48.5
40.1
24.2 | 47.2
30.0
21.2
50.3
44.2
24.9 | 14.7
2.30
0.512
2.59
1.06
0.162 | 45.5
30.7
23.5
29.0
20.9
14.5 | 47.2
30.0
21.2
24.9
18.9
12.4 | # Chapter 5 Part II – 3-D Rigid Body Chap 5.5-5.6 # Equilibrium of a rigid body Now we add the z-axis to the coordinate system! How many Equations of Equilibriums? # Types of 2D connectors (5) # TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems Types of Connection Reaction Number of Unknowns (4) Fz (5) # TABLE 5-2 Continued Types of Connection Number of Unknowns Reaction (6) single journal bearing with square shaft (7) single thrust bearing (8) single smooth pin