Statics - TAM 211

Lecture 34 (no lecture 33) April 13, 2018 Chap 10.1, 10.2, 10.4, 10.8, Chap 5.5-5.6

Announcements

Quiz 6 and Written Assignment 6 scheduling conflict
 Watch Piazza for scheduling announcements

Upcoming deadlines:

- Monday (4/16)
 - Mastering Engineering Tutorial 14
- Tuesday (4/17)
 - PL HW 13
- Quiz 6
- Written Assignment 6

Chapter 10: Moments of Inertia

Goals and Objectives

- Understand the term "moment" as used in this chapter
- Determine and know the differences between
 - First/second moment of area
 - Moment of inertia for an area <

 - Polar moment of inertia
 Mass moment of inertia
- Introduce the parallel-axis theorem.
- Be able to compute the moments of inertia of composite areas.

Inertia ~ hars,

AD - dA

Recap: Mass Moment of Inertia

- Mass moment of inertia is the mass property of a rigid body that determines the torque *T* needed for a desired angular acceleration (*α*) about an axis of rotation.
- A larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis
- Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation.

http://ffden-2.phys.uaf.edu/webproj/211_fall_2014/Ari el_Ellison/Ariel_Ellison/Angular.html

Recap: Mass Moment of Inertia Mass Moment of Thertic α_z Torque-acceleration relation: $T = I \alpha$ where the mass moment of inertia is defined as $I_{zz} = \int \rho r^2 dV$ $I_{22} = \int r^2 dm$, if constant ρ G Mass moment of inertia for a disk: Thin Circular disk $I_{xx} = I_{yy} = \frac{1}{4}mr^2$ $I_{zz} = \frac{1}{2}mr^2$ $I_{z'z'} = \frac{3}{2}mr^2$ $I_{zz} = \int \rho r^2 \, dv = \int_0^t \int_0^{2\pi} \int_0^R \rho r^2 \, (r \, dr \, d\theta \, dz)$ $= \rho \int_0^t \int_0^{2\pi} \frac{r^4}{4} d\theta dz$ $= \rho \int_0^t \frac{r^4}{2} \pi \, dz = \rho \frac{r^4}{2} \pi \, t = \frac{r^2}{2} \rho \, \pi \, r^2 \, t = \frac{r^2}{2} \rho \, V = \frac{r^2}{2} M$ r

Recap: Area moment of inertia (Second moment of area)

- The moment of inertia of the area A with respect to the x-axis is given by $I_x = \int_A y^2 \, dA$
- The moment of inertia of the area A with respect to the y-axis is given by

$$I_y = \int_A x^2 \, dA$$

• The moment of inertia of the area A with respect to the origin *O* is given by (Polar moment of inertia)

$$J_0 = \int_A r^2 \, dA = \int_A (x^2 + y^2) \, dA = I_y + I_x$$

From inside back cover of Hibbler textbook

Recap: Parallel axis theorem

- Often, the moment of inertia of an area is known for an axis passing through the centroid; e.g., x' and y':
- The moments around other axes can be computed from the known I_x' and I_y' : y = y' = y'

$$I_{x} = I_{x'} + Ad_{y}^{2}$$

$$I_{y} = I_{y'} + Ad_{x}^{2}$$

$$J_{O} = J_{C} + A(d_{x}^{2} + d_{y}^{2}) = J_{C} + Ad^{2}$$

Note: the integral over y' gives zero when done through the centroid axis.

Recap: Moment of inertia of composite

- If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions.
- This requires the **parallel axis theorem**
- Remember:
 - The position of the centroid of each component **must** be defined with respect to the **same origin**.
 - It is allowed to consider **negative areas** in these expressions. Negative areas correspond to holes/missing area. **This is the one occasion to have negative moment of inertia**.

Find the moment of inertia of the shape about its centroid:

English units (inches)	A.r	Depth Width in. in.	աժե	Axis X-X			Aris Y-Y		
		Designation	tion in ²		in.	$\overline{I}_{\mathrm{x}}$, in ⁴	$\overline{k}_{\rm x},$ in.	y, in.	$\overline{I}_{g},\mathrm{in}^{4}$	$\overline{k}_{g},$ in.	\overline{x} , in.
W Shapes (Wide-Flange Shapes)	X X X	$W18 \times 76^{\frac{1}{7}}$ $W16 \times 57$ $W14 \times 38$ $W8 \times 31$	22.3 16.8 11.2 9.12	182 16.4 141 800	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
S Shapes (American Standard Shapes)	x x x	$S18 \times 54.7$ $S12 \times 31.8$ $S10 \times 25.4$ $S6 \times 12.5$	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	801 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.950 0.702	
C Shapes (American Standard Channels)	Y Note ch of axis chart	C12×20.7f C10×15.3 C8×11.5 C6×8.2 C6×8.2	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 J 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34	Ţ	3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512 572

English units (inches)

		Area	Doub Width	Axis X-X			Αχίς Υ-Υ			
	Designation	in ²	in.	in.	\overline{I}_{x} , in ⁴	$\overline{k}_{\rm x},$ in.	¥, in.	\overline{I}_{g} , in ⁴	$\overline{k}_{g},$ in.	\overline{x} , in.
W Shapes (Wide-Flange Shapes)	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
S Shapes (American Standard Shapes)	$\begin{array}{c} S18 \times 54.7 \\ S12 \times 31.8 \\ S10 \times 25.4 \\ S6 \times 12.5 \\ \end{array}$	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	801 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.980 0.702	
C Shapes (American Standard Channels) $X \rightarrow Y$	$\begin{array}{c} C12 \times 20.7 \ddagger \\ C10 \times 15.3 \\ C8 \times 11.5 \\ C6 \times 8.2 \\ \hline x \\ \hline x \end{array}$	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
Angles $X \xrightarrow{Y}$ $\overline{x} \xrightarrow{\overline{y}}$ \overline{y}	$ \begin{array}{c} L6 \times 6 \times 1 \ddagger \\ L4 \times 4 \times \frac{1}{2} \\ L3 \times 3 \times \frac{1}{4} \\ L6 \times 4 \times \frac{1}{2} \\ L5 \times 3 \times \frac{1}{2} \\ L3 \times 2 \times \frac{1}{4} \end{array} $	11.0 3.75 1.44 4.75 3.75 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.953	1.86 1.18 0.836 1.98 1.74 0.980	38.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

Metric units (mm)

						Axis X-X			Axis Y-Y		
		Designation	Area mm²	Depth mm	Width mm	\overline{I}_x 10 ⁶ mm ⁴	\overline{k}_x mm	\overline{y} mm	\overline{I}_{y} 106 mm ⁴	\overline{k}_y mm	\overline{x} mm
W Shapes (Wide-Flange Shapes)	x x	W460 × 113† W410 × 85 W360 × 57.8 W200 × 46.1	14400 10900 7230 5890	462 417 358 203	279 181 172 203	554 316 160 45.8	196 171 149 88.1		63.3 17.9 11.1 15.4	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	x x	S460 × 81.4 [†] S310 × 47.3 S250 × 37.8 S150 × 18.6	10300 6010 4810 2360	457 305 254 152	152 127 118 84.6	333 90.3 51.2 9.16	180 123 103 62.2		8.62 3.88 2.80 0.749	29.0 25.4 24.1 17.8	
C Shapes (American Standard Channels)	$x \rightarrow x$ \overline{x} \overline{x}	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3920 2890 2170 1540	305 254 203 152	74.7 66.0 57.4 48.8	53.7 28.0 13.5 5.45	117 98.3 79.0 59.4		1.61 0.945 0.545 0.296	20.2 18.1 15.8 13.6	17.7 16.1 14.5 13.0
Angles X		$\begin{array}{c} L152 \times 152 \times 25.4 \ddagger \\ L102 \times 102 \times 12.7 \\ L76 \times 76 \times 6.4 \\ L152 \times 102 \times 12.7 \\ L127 \times 76 \times 12.7 \\ L76 \times 51 \times 6.4 \end{array}$	7100 2420 929 3060 2420 768			14.7 2.30 0.512 7.20 3.93 0.454	45.5 30.7 23.5 48.5 40.1 24.2	47.2 30.0 21.2 50.3 44.2 24.9	14.7 2.30 0.512 2.59 1.06 0.162	45.5 30.7 23.5 29.0 20.9 14.5	47.2 30.0 21.2 24.9 18.9 12.4