Statics - TAM 211

Lecture 35
April 16, 2018
Chap 5.5-5.6

Announcements

\square Upcoming deadlines:

- Monday (4/16)
- Mastering Engineering Tutorial 14
- Tuesday (4/17)
- PL HW 13
- Monday (4/23)
- Mastering Engineering Tutorial 15
- Quiz 6
- CBTF (4/25-27)
- Written Assignment 6
- Wednesday May 2 G Note day!

Chapter 5 Part II - 3-D Rigid Body

Chap 5.5-5.6

Equilibrium of a rigid body

Now we add the z-axis to the coordinate system!

Equilibrium of a rigid body

Now we add the z-axis to the coordinate system!

How many Equations of Equilibriums?

Six equations!

2D Problems
$\begin{aligned} \text { Translation: } & \sum F_{x}=0, \sum F_{V}=0, \sum F_{z}=0 \\ \text { Rotation: } & \sum M_{x}=0 \sum M_{y}=0 \sum M_{z}=0\end{aligned}$
bEan,
\Rightarrow Gunknowns can be solved! For one FBD
 roller or pin in
confined smooth slot

or

smooth pin or hinge

to collar on smooth rod
(10)

[^0]TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems
Types of Connection Reaction

Number of Unknowns
(1)

cable

1 unknown: 1 force, along cable

smooth surface support

TABLE 5-2 Continued

(9)

single hinge

(10)

fixed support

6 unknowns: 3 forces, 3 couple-moments Note: fore fixed supports, must al ways apply couple-moments to $F B D$

The 100 lb door has its center of gravity at G. Determine the components of reaction at hinges A and B if hinge B resists only forces in the x and y directions and A resists forces in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

Assume properly aligned
\Rightarrow No Moments on $F B D$
Assume hinge A is resisting translatim in Z-axis, but not hinge B
Unknowns: 5
SOLA:

$$
\Delta_{y}=-B_{y}=37.5 \mathrm{by}
$$

I) $\sum M_{y}: 18^{\prime \prime} A_{x}+66^{\prime \prime} B_{x}=0 \quad B_{x}=0 \quad A_{x}=0$

$$
18(-3 x)+66 b_{x}=0
$$

$$
48 B_{x}=0
$$

$$
\begin{aligned}
& \sum F_{x}: A_{x}+B_{x}=0 \\
& A_{x}=B_{x} \\
& \sum F_{y}: A_{y}+B_{y}=0 \\
& \Delta_{s}=-B_{5} \\
& \sum F_{z}: A_{z}-W=0 \\
& A_{z}=W=10016 \hat{k} \hat{} \\
& \begin{aligned}
+5 \sum M_{x}: & -18^{\prime \prime} A_{y}-66^{\prime \prime} B_{y}-18^{\prime \prime} W=0 \quad B \\
& -18^{\prime \prime}\left(-B_{y}\right)-66^{\prime \prime} B_{y}-18^{\prime \prime} W=0
\end{aligned}
\end{aligned}
$$

Given: The rod, supported by thrust bearing at A and cable BC, is subjected to an 80 lb force.

Find: Reactions at the thrust bearing A and cable BC.

6 unground: $T, A_{x}, A_{y}, A_{z}, M_{A x}, M_{A z} \Rightarrow$ use all beaus

$$
\begin{aligned}
& \sum M_{x}: M_{A x}-(6 \mathrm{ft}) F+(6 \mathrm{ft}) T=0 \\
& \text { Answers: } A_{x}=0, A_{y}=0, A_{z}=4016 \hat{k} \uparrow, T=4016 \hat{k} \uparrow, M_{A x}=240 \mathrm{ft} .16 \hat{\imath}, M_{A z}=0
\end{aligned}
$$

If these components have weights $W_{A}=45000 \mathrm{lb}, W_{B}$ $=8000 \mathrm{lb}$ and $W_{C}=6000 \mathrm{lb}$, determine the normal reactions of the wheels D, E, and F on the ground.

Untrowas: $3 N_{D}, N_{E}, N_{F}$ can solve with 3 cans
Answers: $N_{D}=22.6$ kip \hat{k}

$$
N_{\dot{E}}=22.6 \mathrm{k} \cdot \rho \hat{k}
$$

$$
N_{\dot{r}}=13.7 \mathrm{kip} \hat{k}
$$

$$
k_{i p} \equiv k i l o p o u n d=1000 \mathrm{lb}
$$

A bent rod is supported by smooth journal bearings at A, B, and C. $\mathrm{F}=800 \mathrm{~N}$. The supports are properly aligned such that no moment support is present. Determine the reactions at support C .

Pointers for this problem.

1) Bearings are properly aligned
\Rightarrow No couple -moments at bearings Since Journal bearings, only have reaction forces in axes \perp to shaft axis.
2) For applied force \vec{F}, need to consider how \vec{F} will project on to x, y, z axes.

[^0]: fixed support

