Statics - TAM 211

Lecture 35 April 16, 2018 Chap 5.5-5.6

Announcements

Upcoming deadlines:

- Monday (4/16)
 - Mastering Engineering Tutorial 14
- Tuesday (4/17)
 - PL HW 13
- Monday (4/23)
 - Mastering Engineering Tutorial 15
- Quiz 6
 - CBTF (4/25-27)
- Written Assignment 6
 - Wednesday May 2 🗲 Note day!

Chapter 5 Part II – 3-D Rigid Body

Chap 5.5-5.6

Equilibrium of a rigid body

Now we add the z-axis to the coordinate system!

Equilibrium of a rigid body

Now we add the z-axis to the coordinate system!

How many Equations of Equilibriums?

Six equations! 2P Problems Translation: $\sum F_x = 0, \sum F_y = 0, \sum F_z = 0$ Rotation: $\sum M_x = 0 \sum M_y = 0 \sum M_z = 0$ $b \in Eqns$ $\Rightarrow b unknowns can be solved!$ For one FBD

fixed support

Boarings: Support shafts

* Couple-moments are not applied to FBD if the body is supported elsewhere by additional bearings, pins or hinges that are **properly aligned** to prevent rotation in one or more axes).

6 unknowns: 3 forces, 3 couple-moments Note: for fixed supports, must al ways apply couple-moments to FBD

If these components have weights $W_A = 45000$ lb, W_B = 8000 lb and $W_C = 6000$ lb, determine the normal reactions of the wheels D, E, and F on the ground. Unknowns: 3 No, NE, NE can solve with 3 cgns

8 ft

6 ft

X

8 ft

6 ft

Wc

Ν

20 ft

4 ft

3 ft

Unknowns: 3 ND, NE, NE
can solve with 3 cqns
Answers: ND = 22.6 kip
$$\hat{k}$$

NE = 22.6 kip \hat{k}
NE = 13.7 kip \hat{k}
kip = tilopound = 1000 lb

