Statics - TAM 211

Lecture 38
April 23, 2018
Chap 9.5

Announcements

\square Check ALL of your grades on Compass $2 g$! Report issues
\square Exam grades will be posted later this week
\square Upcoming deadlines:

- Tuesday (4/24)
- PL HW 14
- Quiz 6
- CBTF (W-F: 4/25-27)
- CoG thru 3D Rigid Bodies: Lectures 29-36
- Tuesday (5/1)
- PL HW 15
- Wednesday (5/2)

$$
\begin{aligned}
& \text { There wall be } \\
& \text { Discussion } \\
& \text { sections } \\
& \text { Next Week }
\end{aligned}
$$

- Quiz 7

theurbancampfire.com

Chapter 9 Part II - Fluid Pressure

Chap 9.5

Goal and objective

- Present a method for finding the resultant force of a pressure loading caused by a fluid

Recap: Fluid Pressure

For an incompressible fluid at rest with mass density ρ, the pressure varies linearly with depth z

where $\gamma=\rho g$ is called the specific weight (weight per unit volume).
For fresh water: $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right), \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$

- Pressure $p(z)$ or force due to pressure F_{R} are always perpendicular to the object's surface.
- Distributed load due to fluid pressure at depth z is due to pressure and width of surface: $w(z)=p(z) \cdot b=\rho g z b=\gamma z b \quad\left[\begin{array}{c}\text { force } \\ \text { Tength }\end{array}\right]$
- Determine resultant force (magnitude and direction): F_{R}, d_{R}-location of \vec{F}_{R}
- If water, this force is called hydrostatic force

Determine the magnitude and location of the resultant hydrostatic force acting on the submerged rectangular plate $A B$. The

$$
w(z)=p(z) \cdot b
$$ plate has width 1.5 m . The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$

$$
=\rho g h_{1} \cdot \beta
$$

$$
\frac{1}{c}=\frac{1}{3} h\left[\frac{2 e+f}{e+f}\right]
$$

$$
A=\frac{1}{2} h(e+f)
$$

Corrections to notes written in class: For $w(z), w_{A}, w_{B}, I$ incorrectly had written $\omega=p \cdot d$, must be $\omega=p \cdot b$
into 2 simpler load shapes $\quad f_{\Delta+}+\square$

$$
p(z)=\rho g z
$$

$$
=\rho g z \cdot b
$$

$$
w_{A}=p(A) \cdot b
$$

$$
\begin{aligned}
& F_{R}=F_{R_{1}}+F_{R_{2}}=154.5 \mathrm{~N} \\
& \left.d_{R}=\frac{d_{R_{1}} F_{R_{1}}+d_{R_{2}} F_{R 2}}{F_{R}}\right\} \text { from }\left(\sum M_{R}\right)_{A}=\sum M_{A} \\
& d_{R}=1.71 \mathrm{~m} \text { below point } A
\end{aligned}
$$

2 m wide rectangular gate is pinned at its center A and prevented from rotating by block at B. Determine reactions at supports due to hydrostatic pressure. Water density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$

(A)
iclicker which FD for pressur

(B)

2 m wide rectangular gate is pinned at its center A and prevented from rotating by block at B. Determine reactions at supports due to hydrostatic pressure. Water density is $1000 \mathrm{~kg} / \mathrm{m}^{3} \quad b=2 \mathrm{~m}$

orange same ans original? iclicker
Trapezoid: $A=\frac{1}{2} h(e+f), \bar{C}=\frac{1}{3} h\left(\frac{2 e+f}{e+f}\right)$

$$
w_{c}=p_{c} b
$$

$$
\begin{aligned}
& \text { Centroid } \\
& d_{Q}=\frac{1}{3} h\left(\frac{2 w_{C}+w_{B}}{w_{c}+w_{B}}\right)=\frac{1}{3} h\left(\frac{2 p_{C}+p_{B}}{p_{C}+p_{B}}\right) \Rightarrow d_{R}=\frac{4}{3} m \quad \begin{array}{l}
\text { Note where } \\
d_{p} \text { is } \\
\text { relative to }
\end{array} \quad \begin{array}{l}
(\underline{b})=1 \text { No "b" in this expression since b's cancel }
\end{array}
\end{aligned}
$$

Centroid.

FBD gate $\quad \begin{aligned} & \text { of }\left(\frac{b}{b}\right)=1 \text { No " } b \text { ' in this expression since }{ }^{\prime} \text { 's cancel } \\ & \\ & \quad \sum M_{B}:-F_{R} d_{R}+A_{x} \frac{h}{2}=0\end{aligned}$

$$
\begin{aligned}
& +\sum \sum M_{B}:-F_{R} d_{R}+A_{x} \frac{h}{2}=0 \Rightarrow A_{x}=235.4 \mathrm{kN} \\
& \sum F_{x}: F_{R}-A_{x}-B_{x}=0 \Rightarrow B_{x}=29.5 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=p \cdot b \\
& W=\text { Aron shape }
\end{aligned}
$$

Fluid Pressure of a flat plate with constant width
For an incompressible fluid at rest with mass density , the pressure varies linearly with depth z

(2) separcteinto $y-z$ crap components

$$
\begin{array}{ll}
F_{R 1}=W_{1} a & F_{R}^{2}=\left(F_{R_{1}}+W_{f}\right)^{2}+\left(F_{R y}\right)^{2} \\
F_{R y}=F_{\text {Trapezoid }} &
\end{array}
$$

$$
w_{f}=\gamma \cdot \forall_{0} 1=\gamma \cdot A \cdot b=\gamma\left(\frac{a c}{2}\right) b
$$

Fluid Pressure of a curved plate with constant width
For an incompressible fluid at rest with mass density , the pressure varies
linearly with depth z

$$
\begin{aligned}
& \vec{F}_{R}=\sum \vec{F}_{z}+\sum \vec{F}_{y} \\
& F_{R y}=\frac{1}{2} h(e+f)=\frac{1}{2} h\left(W_{1}+W_{2}\right) \\
& \sum F_{z}=F_{R_{z}}+W_{f} \\
& F_{R z}=W_{1} l, W_{f}=\gamma \forall_{1} l=\gamma A_{B C D} b \\
& F_{R}=\sqrt{\left(F_{R_{z}}+W_{f}\right)^{2}+F_{R y}^{2}}
\end{aligned}
$$

Determine the magnitude of the resultant hydrostatic force acting on the gate AB . The gate has width 1.5 m .
2 solution approaches:
(1) Perpendicular load

Triangular load

(2) Separate into x, z components:

Triangle load:

$$
\begin{aligned}
& \text {-angle load: } \\
& F_{R x}=\frac{W_{b} h}{2}=\frac{\rho g b h^{2}}{2}, W_{f}=\gamma \cdot V_{0} \left\lvert\,=\rho g A_{t_{r:}} b=\rho g \frac{c h}{2} b\right. \\
& F_{R}=\sqrt{F_{R x}^{2}+W_{f}^{2}}=\frac{\rho g b h}{2} \sqrt{h^{2}+c^{2}}
\end{aligned}
$$

$$
F_{R}=\frac{\rho g h b a}{2} \quad \sqrt{ } \text { same as before since } h=Z_{B}
$$

The arched surface $A B$ is shaped in the form of a quarter circle. If it i 8 m long, determine the horizontal and vertical components of the resultant force caused by the water acting on the surface.

Rectangle: $F_{R z}=W_{A} R=p_{A} b R=\rho g z_{A} b R=470.9 \mathrm{kN}$
$\begin{aligned} & \begin{array}{l}\text { Weight of } \\ \text { water }\end{array}\end{aligned} W_{f}=\gamma \forall=\rho g A b, A=R^{2}-\frac{\pi R^{4}}{2} \Rightarrow W_{f}=67.4 \mathrm{kN}$
Trapezoid: $F_{R X}=\frac{1}{2} R\left(w_{A}+w_{B}\right)=\frac{R}{2} b\left(p_{A}+p_{B}\right)=627.8 \mathrm{kN}$

$$
\begin{aligned}
\therefore F_{\text {vert }} & =F_{R z}+W_{f} \Rightarrow F_{\text {vert }}=538.3 \mathrm{kN} \quad F_{R}=\sqrt{F_{V}^{2}+F_{H}^{2}}=827.0 \mathrm{kN} \\
\sum F_{\text {hor }} & =F_{R x} \Rightarrow F_{\text {hor }}=627.8 \mathrm{kN}
\end{aligned}
$$

The semicircular drainage pipe is filled with water. Determine the resultant force that the water exerts on the side AB of the pipe per foot of pipe length. The specific weight of the water is $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$

W_{f}

$$
F_{R x}=\frac{W_{B} R}{2}=\frac{P_{B} b R}{2}=\frac{\gamma R^{2} b}{2}
$$

Trompe

$$
\frac{F_{R x}}{b}=\frac{\gamma R^{2}}{2}=124.8 \frac{\mathrm{lb}}{\mathrm{ft}}
$$

$W_{f} \cdot \gamma \forall=\gamma A b=\gamma\left(\frac{\pi R^{2}}{4}\right) b$

$$
\frac{W_{f}}{b}=\frac{8 \pi R^{2}}{4}=196.6 \frac{16}{f+}
$$

$$
F_{R}=\sqrt{F_{R x}^{2}+W_{f}^{2}}=\frac{\gamma R^{2} b}{2} \sqrt{1+\frac{\pi}{2}}
$$

$$
\frac{F_{0}}{b}=\frac{\gamma R^{2}}{2} \sqrt{1+\frac{\pi}{2}}
$$

