Statics - TAM 211

Lecture 2 September 12, 2018

Announcements

Go through course website (policies, info, schedule, references)
 MATLAB training sessions TBA (next 2 weeks)
 Upcoming deadlines:

- Tuesday (Sept 18 due by 11:59 pm)
 - PrairieLearn HW1
 - Take practice Quiz 0 on <u>PrairieLearn</u> (not graded)
 - If you have difficulty logging into PrairieLearn pleases post comment in <u>Blackboard Discussion Board</u>
- Quiz0 (Practice quiz)
 - Practice using PrairieLearn in quiz mode on your computer.
 - Not graded.
 - Should be available within 24 hours

Chapter 1: General Principles Main goals and learning objectives

- Introduce the basic ideas of *Mechanics*
- Give a concise statement of Newton's laws of motion and gravitation
- Review the principles for applying the SI system of units
- Examine standard procedures for performing numerical calculations
- Outline a general guide for solving problems

Numerical Calculations

Dimensional Homogeneity

Equations *must* be dimensionally homogeneous, i.e., each term must be expressed in the same units.

Work problems in the units given unless otherwise instructed!

Position Eqr: $X = Vt + \frac{1}{2}at^2$ (length) = [length]. [time] + (length) [time] (time] (time] + (time²) (length) = [length] + [length] / 7 miles per (hour)² Convert to same units meters km feet inches meters or miles miles

Numerical Calculations Significant figures

Number of significant figures contained in any number determines accuracy of the number. Use \geq 3 significant figures for final answers. For intermediate steps, use symbolic notation, store numbers in calculators or use more significant figures, to maintain precision.

Example: Find area of circle with rectangular cut-out.

$$A = \frac{\pi d^{2}}{4} - wh$$

Given: $d = 3.2$ in., $w = 1.413$ in., and $h = 2.7$ in.

$$A = 4.227$$
 in

$$\Rightarrow A = 4.223$$
 in

$$\Rightarrow A = 4.23$$
 in

$$\Rightarrow A = 4.2$$

00

Why so picky? Units matter...

- A national power company mixed up prices quoted in kilo-Watt-hour (kWh) and therms. ~ I kwh = [BTh = 2L.3 + herms
 - Actual price = \$50,000
 - Paid while trading on the market: \$800,000
- In Canada, plane ran out of fuel because pilot mistook liters for gallons! $|gal \approx 32$ $|f \approx 0.2L_{2}$

Mars climate orbiter – \$327.6 million

General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. MODELTHE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to *solve problems!*

Chapter 2: Force Vectors

Chapter 2: Force vectors Main goals and learning objectives

? Do you know this term? Define scalars, vectors and vector operations and use them to analyze forces acting on objects

- Add forces and resolve them into components
- Express force and position in Cartesian vector form
- Determine a vector's magnitude and direction
 Introduce the dot product and use it to find the angle between
- Introduce the dot product and use it to find the angle between two vectors or the projection of one vector onto another

Scalars and vectors

	Scalar	Vector
Examples	Mass, Volume, Time	Force, Velocity
Characteristics	It has a magnitude	It has a magnitude and direction
Special	No special font	Bold font or symbols (\sim or \rightarrow)
notation used in TAM 210/211	A	Ex: A, Ã, Å Bold, tilda, halfaccad

Multiplication or division of a vector by a scalar

Vector addition

All vector quantities obey the parallelogram law of addition $\,ec{R}=\,ec{A}\,+\,ec{B}\,$

Associative law: A + (B + C) = (A + B) + C

Vector subtraction:

$$\boldsymbol{R} = \boldsymbol{A} - \boldsymbol{B} = \boldsymbol{A} + (-\boldsymbol{B})$$

(-B)has the same magnitude as B but is in opposite direction.

Scalar/Vector multiplication: $\alpha(A + B) = \checkmark \vec{A} = \checkmark \vec{B}$ $(\alpha + \beta)A = \checkmark \vec{A} = \checkmark \vec{A}$

Force vectors

A force—the action of one body on another—can be treated as a vector, since forces obey all the rules that vectors do.

Human Dynamics & Controls Lab

Line of Action

4 Resultant

Furce

Generally asked to solve two types of problems.

- Find the resultant force. (₹)
- 2. Resolve the force into components \overrightarrow{F}_{x} , \overrightarrow{F}_{y}

www.altramotion.com

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the *x*, *y*, *z* axes with unit vectors $\hat{i}, \hat{j}, \hat{k}$ in these directions.

Note that we use the special notation "^" to identify *basis vectors* (instead of the "~" or " \rightarrow " notation) ($\hat{i}, \hat{j}, \hat{k}$) or ($\hat{i}, \hat{j}, \hat{k}$) or ($\hat{i}, \hat{j}, \hat{k}$) $\overset{z}{\mid}$

Right-handed coordinate system

Magnitude of Cartesian vectors $A = |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$

Direction of Cartesian vectors

 $a^2 + b^2$

 \boldsymbol{a}

b

Cos6;