Statics - TAM 211

Lecture 4 September 17, 2018

Announcements

Upcoming deadlines:

- Tuesday (Sept 18)
 - HW1
 - Find on <u>PrairieLearn</u>
- Friday (Sept 21)
 - Written Assignment 1
 - Find on <u>Schedule</u>
 - Submit on Blackboard

Recap from Lecture 3

Position vector

$$\mathbf{r} = \mathbf{r}_{B} - \mathbf{r}_{A}$$

$$= (x_{B}\,\mathbf{i} + y_{B}\,\mathbf{j} + z_{B}\,\mathbf{k}) - (x_{A}\,\mathbf{i} + y_{A}\,\mathbf{j} + z_{A}\,\mathbf{k})$$

$$\mathbf{r} = (x_{B} - x_{A})\,\mathbf{i} + (y_{B} - y_{A})\,\mathbf{j} + (z_{B} - z_{A})\,\mathbf{k}$$
Thus, the $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ components of the positon vector \mathbf{r} may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

The force vector \boldsymbol{F} acting a long the rope can be defined by the unit vector \boldsymbol{u} (defined the <u>direction</u> of the rope) and the <u>magnitude</u> \boldsymbol{F} of the force.

The unit vector \boldsymbol{u} is specified by the position vector \boldsymbol{r} :

Force vector directed along a line

Determine the force vector \vec{F} along the rope.

Dot (or scalar) product

The dot product of vectors **A** and **B** is defined as such

 $A \cdot B =$

 $A_{r}\mathbf{i}$

 $oldsymbol{i}\cdotoldsymbol{i}=1$

i

 A_{v} i

Laws of operation:

 $A \cdot B = B \cdot A$ $\alpha(A \cdot B) = \alpha A \cdot B = A \cdot \alpha B$ $A \cdot (B + C) = A \cdot B + A \cdot C$

Cartesian vector formulation:

 $oldsymbol{A}\cdotoldsymbol{B}$

=

Note that: $j \bigstar \quad i \cdot j = 0$

Projection of vector onto parallel and perpendicular lines

The scalar component A_{\parallel} of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

Determine the projected component of the force vector F_{AC} along the axis of strut AO. Express your result as a Cartesian vector

The cross product of vectors **A** and **B** yields the vector **C**, which is written

$$oldsymbol{C} = oldsymbol{A} imes oldsymbol{B}$$

The magnitude of vector **C** is given by:

The vector **C** is perpendicular to the plane containing **A** and **B** (specified by the **right-hand rule**). Hence,

Geometric definition of the cross product: the magnitude of the cross product is given by the area of a parallelogram

Laws of operation:

A imes B = -B imes A

$$\alpha(\boldsymbol{A} \times \boldsymbol{B}) = (\alpha \boldsymbol{A}) \times \boldsymbol{B} = \boldsymbol{A} \times (\alpha \boldsymbol{B}) = (\boldsymbol{A} \times \boldsymbol{B})\alpha$$

$$A \times (B + D) = A \times B + A \times D$$

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i = 0$

Considering the cross product in Cartesian coordinates

 $oldsymbol{A} imes oldsymbol{B}$

Also, the cross product can be written as a determinant.

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Each component can be determined using 2×2 determinants.

 $\boldsymbol{A} \times \boldsymbol{B} = (A_y B_z - A_z B_y) \boldsymbol{i} - (A_x B_z - A_z B_x) \boldsymbol{j} + (A_x B_y - A_y B_x) \boldsymbol{k}$