Statics - TAM 211

Lecture 4
September 17, 2018

Announcements

\square Upcoming deadlines:

- Tuesday (Sept 18)
- HW1
- Find on PrairieLearn
- Friday (Sept 21)
- Written Assignment 1
- Find on Schedule
- Submit on Blackboard

Recap from Lecture 3

- Position vector

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{r}_{B}-\boldsymbol{r}_{A} \\
& =\left(x_{B} \boldsymbol{i}+y_{B} \boldsymbol{j}+z_{B} \boldsymbol{k}\right)-\left(x_{A} \boldsymbol{i}+y_{A} \boldsymbol{j}+z_{A} \boldsymbol{k}\right) \\
\boldsymbol{r} & =\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}
\end{aligned}
$$

Thus, the $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ components of the positon vector \boldsymbol{r} may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

The force vector \boldsymbol{F} acting a long the rope can be defined by the unit vector \boldsymbol{u} (defined the direction of the rope) and the magnitude F of the force.

The unit vector \boldsymbol{u} is specified by the position vector \boldsymbol{r} :

Force vector directed along a line

Determine the force vector $\overrightarrow{\boldsymbol{F}}$ along the rope.

Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such
$\boldsymbol{A} \cdot \boldsymbol{B}=$

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A} \\
& \alpha(\boldsymbol{A} \cdot \boldsymbol{B})=\alpha \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \alpha \boldsymbol{B} \\
& \boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C}
\end{aligned}
$$

Cartesian vector formulation:

$\boldsymbol{A} \cdot \boldsymbol{B}$	$=$
	$=$
\quad Note that:	

$$
\boldsymbol{j} \uparrow_{\longrightarrow}^{\boldsymbol{i}} \boldsymbol{i} \cdot \boldsymbol{j}=0
$$

Projection of vector onto parallel and perpendicular lines

The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

And thus the $\underline{\text { vector components }} \boldsymbol{A}_{\|}$and \boldsymbol{A}_{\perp} are given by:

Determine the projected component of the force vector $F_{A C}$ along the axis of strut AO. Express your result as a
Cartesian vector

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$
C=A \times B
$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

Geometric definition of the cross product: the magnitude of the cross product is given by the area of a parallelogram

Cross (or vector) product

Laws of operation:

$$
A \times B=-B \times A
$$

$\alpha(\boldsymbol{A} \times \boldsymbol{B})=(\alpha \boldsymbol{A}) \times \boldsymbol{B}=\boldsymbol{A} \times(\alpha \boldsymbol{B})=(\boldsymbol{A} \times \boldsymbol{B}) \alpha$
$\boldsymbol{A} \times(\boldsymbol{B}+\boldsymbol{D})=\boldsymbol{A} \times \boldsymbol{B}+\boldsymbol{A} \times \boldsymbol{D}$

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i=0$

Considering the cross product in Cartesian coordinates

$$
\boldsymbol{A} \times \boldsymbol{B}
$$

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

For element \mathbf{j} :

For element \mathbf{k} :

$$
\boldsymbol{A} \times \boldsymbol{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \boldsymbol{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \boldsymbol{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \boldsymbol{k}
$$

