Statics - TAM 211

Lecture 4
September 17, 2018

Announcements

\square Upcoming deadlines:

- Tuesday (Sept 18)
- HW1
- Find on PrairieLearn
- Friday (Sept 21)
- Written Assignment 1
- Find on Schedule

You can SCAN your WA at RC

- Submit on Blackboard

HW 1: Student solution time (min)

- Not trying to solve problems on your own and copying other's answers will make taking quizzes ∞ more difficult!
- Similar to students at UIUC. Many continue bad habits and do very poorly in this course.

Student Code \& Academic Integrity

"All students are responsible to refrain from infractions of academic integrity, conduct that may lead to suspicion of such infractions, and conduct that aids others in such infractions."
"I did not know" is not an excuse.
The following are academic integrity infractions:

- Cheating - using or attempting to use unauthorized materials
- Plagiarism - representing the words, work, or ideas of another as your own (using non-copyrighted material is also plagiarism)
- Fabrication - falsification or invention of any information, including citations
- Facilitating infractions of academic integrity - helping or attempting to help another commit infraction
- Bribes, Favors, and Threats - actions intended to affect a grade or evaluation
- Academic Interference - tampering, altering or destroying educational material or depriving someone else of access to that material
(source https://provost.illinois.edu/policies/policies/academic-integrity/students-quick-reference-guide-to-academic-
integrity/)
- Violators will be caught - we check!!

Recap from Lecture 3

- Position vector

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{r}_{B}-\boldsymbol{r}_{A} \\
& =\left(x_{B} \boldsymbol{i}+y_{B} \boldsymbol{j}+z_{B} \boldsymbol{k}\right)-\left(x_{A} \boldsymbol{i}+y_{A} \boldsymbol{j}+z_{A} \boldsymbol{k}\right)
\end{aligned}
$$

$$
\boldsymbol{r}=\left(x_{B}-x_{A}\right) \boldsymbol{i}+\left(y_{B}-y_{A}\right) \boldsymbol{j}+\left(z_{B}-z_{A}\right) \boldsymbol{k}
$$

Force vector directed along a line

The force vector \boldsymbol{F} acting a long the rope can be defined by the unit vector \boldsymbol{u} (defined the direction of the rope) and the magnitude F of the force.

$$
\overrightarrow{\boldsymbol{F}}=F \overrightarrow{\boldsymbol{u}} \text { direction }
$$

The unit vector \boldsymbol{u} is specified by the position vector \boldsymbol{r} :

where

$$
\overrightarrow{\boldsymbol{r}}=\left(x_{B}-x_{A}\right) \hat{\boldsymbol{\imath}}+\left(y_{B}-y_{A}\right) \hat{\boldsymbol{\jmath}}^{+}\left(z_{B}-z_{A}\right) \widehat{\boldsymbol{k}}
$$

Force vector directed along a line
Determine the force vector $\overrightarrow{\boldsymbol{F}}$ along the rope.
Given: coordinates for pt ,A\&pt,B
To solve for \vec{F}, use:

$$
\begin{aligned}
& \vec{F}=|\vec{F}| \vec{u} \\
& \vec{r}_{A B}=\vec{r}_{B}-\vec{r}_{A}=\left(r_{B X}-r_{A X}\right) \hat{\imath}+\left(r_{B y}-r_{A y}\right) \hat{\jmath}+\left(r_{B Z}-r_{A l}\right) \hat{k} \\
& \vec{r}_{A B}=(0-(-10)) \hat{\imath}+(0-(-15)) \hat{\jmath}+(0-(30)) \hat{k} \\
& \vec{r}_{A B}=[10 \hat{\imath}+15 \hat{\jmath}-30 \hat{k}] f+ \\
& \therefore \vec{F}=\left(2000(b)\left[\frac{10 \hat{\imath}+15 \hat{\jmath}-30 \hat{k}}{\left.\sqrt{10^{2}+15^{2}+(-30)^{2}}\right][f t]}\right][\mathrm{ft]}\right. \\
&=2000\left[\frac{10 \hat{\imath}+15 \hat{\jmath}-30 \hat{k}}{\sqrt{1325}}\right][16] \\
& \vec{F}=549.4 \hat{\imath}+824.2 \hat{\jmath}-1648.3 \hat{k}[15]
\end{aligned}
$$

Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

$$
\stackrel{\rightharpoonup}{\boldsymbol{A}} \cdot \stackrel{\rightharpoonup}{\boldsymbol{B}}=|\stackrel{\rightharpoonup}{A}||\vec{B}| \cos \theta
$$

User of dot product: Find projections $l \mid$ or 1 to a line Laws of operation:

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A} \\
& \alpha(\boldsymbol{A} \cdot \boldsymbol{B})=\alpha \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A} \cdot \alpha \boldsymbol{B} \\
& \boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C}
\end{aligned}
$$

Cartesian vector formulation:

$$
\begin{aligned}
& \boldsymbol{A} \cdot \boldsymbol{B}=\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \cdot\left(B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right) \\
&= A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& \text { Note that: }
\end{aligned}
$$

$$
\stackrel{j}{\longrightarrow} \quad \boldsymbol{i} \cdot \boldsymbol{j}=0 \quad \longrightarrow \quad i \cdot i=1
$$

Projection of vector onto parallel and perpendicular lines

The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

$$
\begin{gathered}
|\vec{u}|=1 \\
A_{\|}=\boldsymbol{A} \cdot \boldsymbol{u}=|\boldsymbol{A}| \cos (\theta)
\end{gathered}
$$

And thus the vector components $\boldsymbol{A}_{\|}$and \boldsymbol{A}_{\perp} are given by:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}_{\|}=A_{\|} \overrightarrow{\boldsymbol{u}}=(\underbrace{(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{u}})}_{\text {Scalor }} \overrightarrow{\boldsymbol{u}} \\
& \overrightarrow{\boldsymbol{A}}_{\perp}=\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{A}}_{\|}
\end{aligned}
$$

Determine the projected component of the force vector $F_{A C}$ along the axis of strut AO.
Express your result as a Cartesian vector
Approach:
(1) Find u_{n} it vectors $\vec{u}_{A C} \notin \vec{u}_{A 0}$
(2) Write force vector $\vec{F}_{A C}$ in Cartesian Coord
lb (3) Solve for $\vec{F}_{A C} \cdot \vec{U}_{A O}=\left(F_{A C}\right)_{\text {HO }}$ " " $\vec{F}_{A C}$ prigeded
(1)

Compare to
Lin Yingkai's
solution from class

$$
\begin{aligned}
(1) \vec{u}_{A C} & =\frac{\left(x_{C}-x_{A}\right) \hat{\imath}+\left(y_{C}-y_{A}\right) \hat{\jmath}+\left(z_{C}-z_{A}\right) \hat{k}}{1 \vec{u}_{A C} \mid} \quad \text { in direction of } \\
& =\frac{5 \cos (60) \hat{\imath}+(-6) \hat{\jmath}+[5 \sin (60)-2] \hat{k}}{1 \vec{u}_{A C l}} \\
\vec{u}_{A C} & =0.362 \hat{\imath}-0.869 \hat{\jmath}+0.33 \hat{k} \quad\binom{\text { unit }}{\text { vector }} \\
& =\frac{1}{1 a_{A C l}}\left(5 / 2,-6, \frac{5 \sqrt{3}-4)}{2} \text { where }\left|\vec{u}_{A C}\right|=6.905\right. \\
\vec{u}_{A_{0}} & =\frac{\left(x_{C}-x_{A}\right) \hat{\imath}+\left(y_{0}-y_{A}\right) \hat{\jmath}+\left(z_{0}-z_{A}\right) \hat{k}}{1 \vec{u}_{A 0} \mid} \\
& =\frac{(-0) \hat{\imath}+(-6) \hat{\jmath}+(-2) \hat{k}}{1 \vec{u}_{A 0} 1} \\
\vec{u}_{A 0} & =-0.949 \hat{\jmath}-0.316 \hat{k} \quad \text { (unit } \\
& =\left(0,-\frac{3 \sqrt{10}}{10},-\frac{\sqrt{10}}{10}\right)
\end{aligned}
$$

Determine the projected component of the force vector $F_{A C}$ along the axis of strut AO.
Express your result as a Cartesian vector
Approach:
(1) Find u_{n} it vectors $\vec{u}_{A C} \notin \vec{u}_{A O}$
(2) Write force vector $\vec{F}_{A C}$ in Cartesian coord
(3) Solve for $\vec{F}_{A C} \cdot \vec{U}_{A O}=\left(F_{A C}\right)_{A_{O}}$ " $\vec{F}_{A C}$ projeded in dissection of
(2)

$$
\begin{aligned}
\vec{F}_{A C} & =F_{A C} \vec{u}_{A C} \quad \vec{u}_{A \circ}^{\prime \prime} \\
\vec{F}_{A C} & =(601 b)[0.362 \hat{\imath}-0.869 \hat{\jmath}+0.338 \hat{k}] \\
& \cong(21.72,-52.14,26.28)
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
\left(F_{A C}\right)_{A O} & =\vec{F}_{A C} \cdot \vec{u}_{A O}=\left(F_{A C} \vec{u}_{A C}\right) \cdot \vec{u}_{A O} \\
& =(21.72 \times 0)+(-52.14 * 0.949)+(20.28 *-0.316) \\
\left(F_{A C}\right)_{A O} & =43.07 \mathrm{lb}
\end{aligned}
$$

Examples Given he e vectors

$$
\begin{aligned}
& \boldsymbol{A}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k} \\
& \boldsymbol{B}=15 \boldsymbol{i}-20 \boldsymbol{j}+18 \boldsymbol{k}
\end{aligned}
$$

$$
\text { Solve these on your own } C=i+7 k
$$

Determine:

1. $\boldsymbol{A}+\boldsymbol{B}$
2. $\boldsymbol{B}-\boldsymbol{C}$
3. $\boldsymbol{A} \cdot \boldsymbol{B}$
4. $\boldsymbol{B} \times \boldsymbol{C}$
5. a unit vector in the direction of \boldsymbol{C}
6. the direction cosines of \boldsymbol{B}
