Statics - TAM 211

Lecture 4 September 17, 2018

Announcements

□ Upcoming deadlines:

- Tuesday (Sept 18)
 - HW1
 - Find on <u>PrairieLearn</u>
- Friday (Sept 21)
 - Written Assignment 1
 - Find on <u>Schedule</u>

• You can SCAN your WA at RC

• Submit on Blackboard

- Not trying to solve problems <u>on your own and copying other's answers</u> will make taking quizzes ∞ more difficult!
- Similar to students at UIUC. Many continue bad habits and do very poorly in this course.

Student Code & Academic Integrity

"All students are responsible to refrain from infractions of academic integrity, conduct that may lead to suspicion of such infractions, and conduct that aids others in such infractions."

"I did not know" is not an excuse.

The following are academic integrity infractions:

- Cheating using or attempting to use unauthorized materials
- Plagiarism representing the words, work, or ideas of another as your own (using non-copyrighted material is also plagiarism)
- Fabrication falsification or invention of any information, including citations
- Facilitating infractions of academic integrity helping or attempting to help another commit infraction
- Bribes, Favors, and Threats actions intended to affect a grade or evaluation
- Academic Interference tampering, altering or destroying educational material or depriving someone else of access to that material

(source <u>https://provost.illinois.edu/policies/policies/academic-integrity/students-quick-reference-guide-to-academic-integrity/</u>)

– Violators will be caught – we check!!

Recap from Lecture 3

r

Position vector

$$= \boldsymbol{r}_B - \boldsymbol{r}_A$$

= $(x_B \, \boldsymbol{i} + y_B \, \boldsymbol{j} + z_B \, \boldsymbol{k}) - (x_A \, \boldsymbol{i} + y_A \, \boldsymbol{j} + z_A \, \boldsymbol{k})$

 $\mathbf{r} = (x_B - x_A) \, \mathbf{i} + (y_B - y_A) \, \mathbf{j} + (z_B - z_A) \, \mathbf{k}$

Thus, the (i, j, k) components of the position vector r may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

Force vector directed along a line

The force vector F acting a long the rope can be defined by the unit vector u (defined the <u>direction</u> of the rope) and the <u>magnitude</u> F of the force.

 $\vec{F} = F\vec{u}$ The unit vector \vec{u} is specified by the position

vector **7**:

Such that $\vec{u} = \frac{\vec{r}}{|\vec{r}|} (\underline{m})$ Note that \vec{u} is unitless and points in the direction of \vec{r} .

where

$$\vec{r} = (x_B - x_A)\hat{\imath} + (y_B - y_A)\hat{\jmath} + (z_B - z_A)\hat{k}$$

Force vector directed along a line

Determine the force vector \boldsymbol{F} along the rope. Given: coordinates for pt. A & pt. B & magnitude of F To solve for F, use: $\vec{F} = |\vec{F}| \vec{u}$ $\vec{u} = \frac{\vec{r}_{AB}}{|\vec{F}_{AB}|}$ $\vec{r}_{AB} = \vec{r}_{B} - \vec{r}_{A} = (r_{BX} - r_{AX})\hat{i} + (r_{BY} - r_{AY})\hat{j} + (r_{BZ} - r_{AZ})\hat{k}$ $\vec{\Gamma}_{AB} = (0 - (-10))\hat{i} + (0 - (-15))\hat{j} + (0 - (30))\hat{k}$ $T_{AB} = [10\hat{i} + 15\hat{j} - 30\hat{k}]f+$ $\vec{F} = (2000 \text{ (b)}) \left[\frac{10 \text{ î} + 15 \text{ j} - 30 \text{ k}}{\sqrt{10^2 + 15^2} + (-30)^2} \right] (\text{f+})$ $= 2600 \int \frac{10\hat{1} + 15\hat{1} - 30\hat{k}}{\sqrt{13257}} [1b]$ $\vec{F} = 549.41 + 824.21 - 1648.3 \hat{k} (16)$

Dot (or scalar) product
The dot product of vectors A and B is defined as such

$$\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{b}| c \circ s \Theta$$

Uses of dot product:
 $\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{b}| c \circ s \Theta$
Uses of dot product:
 \overrightarrow{F} ind projections || or \overrightarrow{I} to along
Laws of operation:
 $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}$
 $\alpha(A \cdot B) = \alpha \overrightarrow{A} \cdot \overrightarrow{B} = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B = A \cdot \alpha \overrightarrow{B}$
 $A \cdot (B + C) = A \cdot B + A \cdot C$
Cartesian vector formulation:
 $A \cdot B = (A_x \cdot i + A_y \cdot j + A_z \cdot k) \cdot (B_x \cdot i + B_y \cdot j + B_z \cdot k)$
 $= A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z$
Note that:
 $j \quad i \cdot j = 0$
 $i \quad i \cdot i = 1$

Projection of vector onto parallel and perpendicular lines

The scalar component A_{\parallel} of a vector A along (parallel to) a line with unit vector u is given by:

िंदी = ।
$$A_{\parallel} = \boldsymbol{A} \cdot \boldsymbol{u} = |\boldsymbol{A}| \cos(\theta)$$

And thus the <u>vector</u> components $oldsymbol{A}_{\parallel}$ and $oldsymbol{A}_{\perp}$ are given by:

$$\vec{A}_{\parallel} = A_{\parallel} \vec{u} = (\vec{A} \cdot \vec{u})\vec{u}$$
$$\vec{A}_{\perp} = \vec{A} - \vec{A}_{\parallel}$$

Determine the projected component of the force vector
$$F_{AC}$$
 along the axis of strut AO.
Express your result as a Cartesian vector
Approach:
 O Find unit vectors \overline{W}_{AC} in Cartesian Coord
 $F_{AB} = 70$ lb
 $F_{AB} = 70$ lb
 $F_{AB} = 70$ lb
 $F_{AC} = 60$ lb (3) Solve for $\overline{F}_{AC} = \overline{W}_{AO} = (\overline{F}_{AC})_{AO}$ induction of
 $\overline{W}_{AC} = (\underline{W}_{C} - \underline{V}_{A})^{2} + (\underline{V}_{C} - \underline{V}_{A})^{2} + (\underline{V}_{C$

$$(3) (F_{AC})_{A0} = F_{AC} \cdot \tilde{u}_{A0} = (F_{AC} \cdot \tilde{u}_{AC}) \cdot \tilde{u}_{A0}$$
$$= (2172 \times 0) + (-52.14 \times 0.949) + (20.28 \times -6316)$$
$$(F_{AC})_{A0} = 43.0716$$
$$-6.408$$

Examples Given the vectors A = 2i - j + kSolve these on your own C = i + 7k

Determine:

- 1. A + B
- 2. B C
- 3. $\boldsymbol{A} \cdot \boldsymbol{B}$
- 4. $\boldsymbol{B} \times \boldsymbol{C}$
- 5. a unit vector in the direction of C
- 6. the direction cosines of \boldsymbol{B}