Statics - TAM 211

Lecture 5
September 19, 2018

Announcements

\square Upcoming deadlines:

- Friday (Sept 21)
- Written Assignment 1
- Find on Schedule
- You can SCAN your WA at RC
- Submit on Blackboard
- Tuesday (9/26)
- Prairie Learn HW2

Recap of Lecture 4

- Position vectors
- Force vector directed along a line
- Dot (scalar) product

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$
\boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{B}
$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

Geometric definition of the cross product: the magnitude of the cross product is given by the area of a parallelogram

Cross (or vector) product

Laws of operation:
$\boldsymbol{A} \times \boldsymbol{B}=-\boldsymbol{B} \times \boldsymbol{A}$
$\alpha(\boldsymbol{A} \times \boldsymbol{B})=(\alpha \boldsymbol{A}) \times \boldsymbol{B}=\boldsymbol{A} \times(\alpha \boldsymbol{B})=(\boldsymbol{A} \times \boldsymbol{B}) \alpha$
$\boldsymbol{A} \times(\boldsymbol{B}+\boldsymbol{D})=\boldsymbol{A} \times \boldsymbol{B}+\boldsymbol{A} \times \boldsymbol{D}$

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i=0$

Considering the cross product in Cartesian coordinates
$\boldsymbol{A} \times \boldsymbol{B}$

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

Chapter 3: Equilibrium of a particle

Goals and Objectives

- Practice following general procedure for analysis.
- Introduce the concept of a free-body diagram for an object modeled as a particle.
- Solve particle equilibrium problems using the equations of equilibrium.

General procedure for analysis

1. Read the problem carefully; write it down carefully.
2. MODEL THE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
3. Apply principles needed.
4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
5. Substitute numbers. Provide proper units throughout. Check significant figures. Box the final answer(s).
6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to solve problems!

Equilibrium of a particle

According to Newton's first law of motion, a particle will be in equilibrium (that is, it will remain at rest or continue to move with constant velocity) if and only if
where $\overrightarrow{\boldsymbol{F}}$ is the resultant force vector of all forces acting on a particle.

3-Dimensional forces: equilibrium requires

Equilibrium of a particle (cont)

Coplanar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes

Free body diagram

Drawing of a body, or part of a body, on which all forces acting on the body are shown.

- Key to writing the equations of equilibrium.
- Can draw for any object/subsystem of system. Pick the most appropriate object. (Equal \& opposite forces on interacting bodies.)
\square Draw Outlined Shape: image object free of its surroundings
\square Sometimes may collapse large object into point mass
\square Establish $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes in any suitable orientation
\square Show positive directions for translation and rotation
Show all forces acting on the object at points of application
\square Label all known and unknown forces
\square Sense ("direction") of unknown force can be assumed. If solution is negative, then the sense is reverse of that shown on FBD

Examples

Find the tension in the cables for a given mass.

\square Draw Outlined Shape
\square Establish x, y, z axes
\square Show all forces acting on object
\square Label known and unknown forces
\square Assume sense of unknown force

Find the forces in cables AB and AC?

