Statics - TAM TAM 211

Lecture 6

September 21, 2018

Announcements

\square Zhaoyu Xu (TA) has office hours on Fridays 1-3 pm in Library Cafe.
\square Use the Blackboard Discussion Board if you have questions.
\square Videos with more practice of resultant forces have been uploaded to Blackboard
\square No class on Monday September 24 (Mid-Autumn Festival)
\square Upcoming deadlines:

- Friday (Sept 21)
- Written Assignment 1
- Tuesday (9/26)
- Prairie Learn HW2
- Thursday (9/28)
- Note different day!
- Quiz 1
- 6-7 pm
- Computer Lab
- No personal calculator, must use computer

Chapter 3: Equilibrium of a particle

Goals and Objectives

- Practice following general procedure for analysis.
- Introduce the concept of a free-body diagram for an object modeled as a particle.
- Solve equilibrium problems using the equations of equilibrium.
- 3D, 2D planar, idealizations (smooth surfaces, pulleys, springs)

Recap: General procedure for analysis

1. Read the problem carefully; write it down carefully.
2. MODEL THE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
3. Apply principles needed.
4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
5. Substitute numbers. Provide proper units throughout. Check significant figures. Box the final answer(s).
6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to solve problems!

Recap: Equilibrium of a particle

3-Dimensional forces: equilibrium requires

$$
\sum \boldsymbol{F}=\sum F_{x} \boldsymbol{i}+\sum F_{y} \boldsymbol{j}+\sum F_{z} \boldsymbol{k}=\mathbf{0} \quad \rightleftarrows \quad \begin{aligned}
& \sum F_{y}=0 \\
& \sum F_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0 \\
& \sum F_{z}=0
\end{aligned}
$$

Planar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes

$$
\sum \boldsymbol{F}=\sum F_{x} \boldsymbol{i}+\sum F_{y} \boldsymbol{j}=\mathbf{0}
$$

Recap: Free body diagram

Drawing of a body, or part of a body, on which all forces acting on the body are shown.
Draw Outlined Shape: image object free of its surroundings
\square Establish $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes in any suitable orientation
\square Show positive directions for translation and rotation
Show all forces acting on the object at points of application
Label all known and unknown forces
Sense ("direction") of unknown force can be assumed. If solution is negative, then the sense is reverse of that shown on FBD

Recap: Equations of equilibrium

\square Use FBD to write equilibrium equations in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions
$\square \sum \overrightarrow{\boldsymbol{F}_{\boldsymbol{x}}}=0, \sum \overrightarrow{\boldsymbol{F}_{\boldsymbol{y}}}=0$, and if 3D $\sum \overrightarrow{\boldsymbol{F}_{\boldsymbol{z}}}=0$,
\square If \# equations \geq \# unknown forces, statically determinate (can solve for unknowns)
\square If \# equations < \# unknown forces, indeterminate (can NOT solve for unknowns), need more equations
\square Get more equations from FBD of other bodies in the problem

Find the forces in cables AB and AC ?
\square Draw Outlined Shape
\square Establish $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
\square Label known and unknown forces
\square Show all forces acting on object
\square Assume sense of unknown force

Idealizations

Contact force on a smooth surface (with no friction) will be a normal force (i.e., perpendicular to the surface at the point of contact.

Idealizations

Pulleys are (usually) regarded as frictionless; then the tension in a rope or cord around the pulley is the same on either side.

Frictionless pulley

Idealizations

Springs are (usually) regarded as linearly elastic; then the tension is proportional to the change in length s.

Linearly elastic spring

The five ropes can each take 1500 N without breaking. How heavy can W be without breaking any?

Determine the required length of cord AC so that the $8-\mathrm{kg}$ lamp can be suspended in the position shown. The undeformed spring length is 0.4 m and has a stiffness of $300 \mathrm{~N} / \mathrm{m}$.

3D force systems Use $\sum \overrightarrow{\boldsymbol{F}_{x}}=0, \sum \overrightarrow{\boldsymbol{F}_{\boldsymbol{y}}}=0, \sum \overrightarrow{\boldsymbol{F}_{z}}=0$

Determine the stretch in each of the two springs Example - 3D required to hold the $20-\mathrm{kg}$ crate in the equilibrium

