Statics - TAM TAM 211

Lecture 6 September 21, 2018

Announcements

- □ Zhaoyu Xu (TA) has office hours on Fridays 1-3 pm in Library Cafe.
- Use the Blackboard Discussion Board if you have questions.
- Videos with more practice of resultant forces have been uploaded to Blackboard
- □ No class on Monday September 24 (Mid-Autumn Festival)

□ Upcoming deadlines:

- Friday (Sept 21)
 - Written Assignment 1
- Tuesday (9/26)
 - Prairie Learn HW2
- Thursday (9/28)
 - Note different day!
 - Quiz 1
 - 6-7 pm
 - Computer Lab
 - No personal calculator, must use computer

Chapter 3: Equilibrium of a particle

Goals and Objectives

- Practice following <u>general procedure for analysis</u>.
- Introduce the concept of a <u>free-body diagram</u> for an object modeled as a particle.
- Solve equilibrium problems using the <u>equations of equilibrium</u>.
 - 3D, 2D planar, idealizations (smooth surfaces, pulleys, springs)

Recap: General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. MODELTHE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

Most effective way to learn engineering mechanics is to *solve problems!*

Recap: Equilibrium of a particle

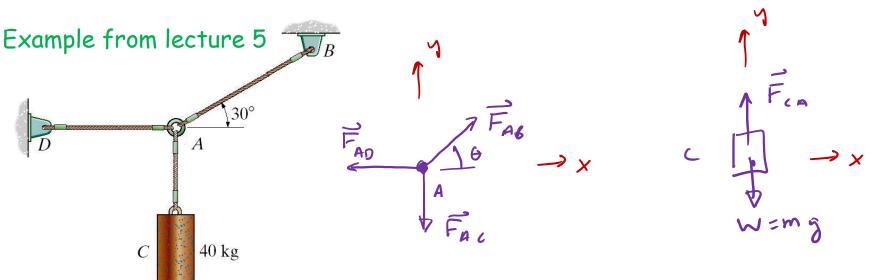
3-Dimensional forces: equilibrium requires

$$\sum F_{x} = 0$$

$$\sum F_{x} i + \sum F_{y} j + \sum F_{z} k = 0$$

$$\sum F_{y} = 0$$

$$\sum F_{z} = 0$$


Planar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes $\sum F = -0$

$$\sum \mathbf{F} = \sum F_x \, \mathbf{i} + \sum F_y \, \mathbf{j} = \mathbf{0} \qquad \Longrightarrow \qquad \sum F_x = 0$$
$$\sum F_y = 0$$

Recap: Free body diagram

Drawing of a body, or part of a body, on which all forces acting on the body are shown.

- Draw Outlined Shape: image object free of its surroundings
- \Box Establish x, y, z axes in any suitable orientation
 - $\hfill\square$ Show positive directions for translation and rotation
- $\hfill\square$ Show all forces acting on the object at points of application
- $\hfill\square$ Label all known and unknown forces
- □ Sense ("direction") of unknown force can be assumed. If solution is negative, then the sense is reverse of that shown on FBD

Recap: Equations of equilibrium

- □ Use FBD to write equilibrium equations in x, y, z directions □ $\Sigma \overrightarrow{F_x} = 0, \Sigma \overrightarrow{F_y} = 0,$ and if 3D $\Sigma \overrightarrow{F_z} = 0,$ □ If # equations ≥ # unknown forces, statically determinate (can solve for unknowns)
 - If # equations < # unknown forces, indeterminate (can NOT solve for unknowns), need more equations</p>
- Get more equations from FBD of other bodies in the problem

(a) Pt. A:
(a) Pt. A:
(b)
$$F_{ns} + F_{ng} \cos \theta = 0$$

(c) $F_{ca} - mg = 0$
(c) F_{ca}

Find the forces in cables AB and AC?

- Draw Outlined Shape
- Establish x, y, z axes

FBA

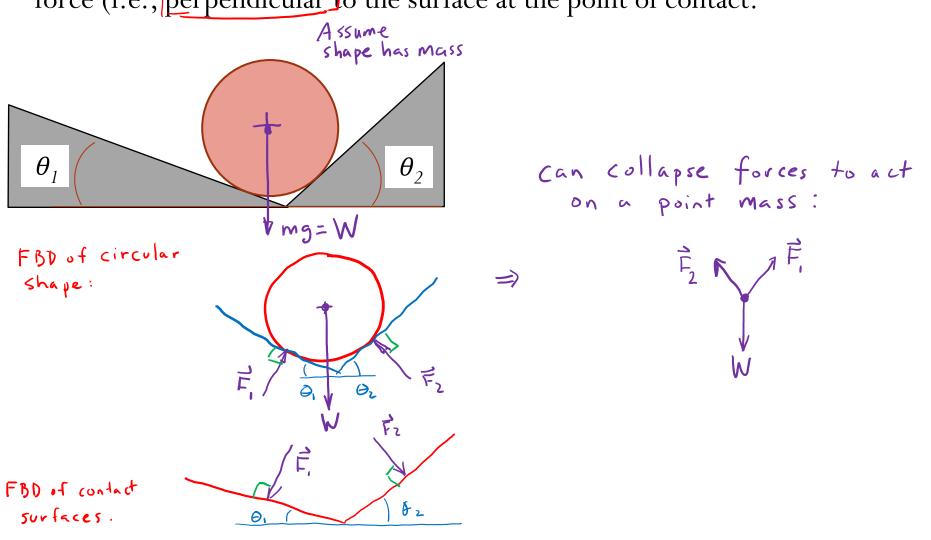
Alternatively ..

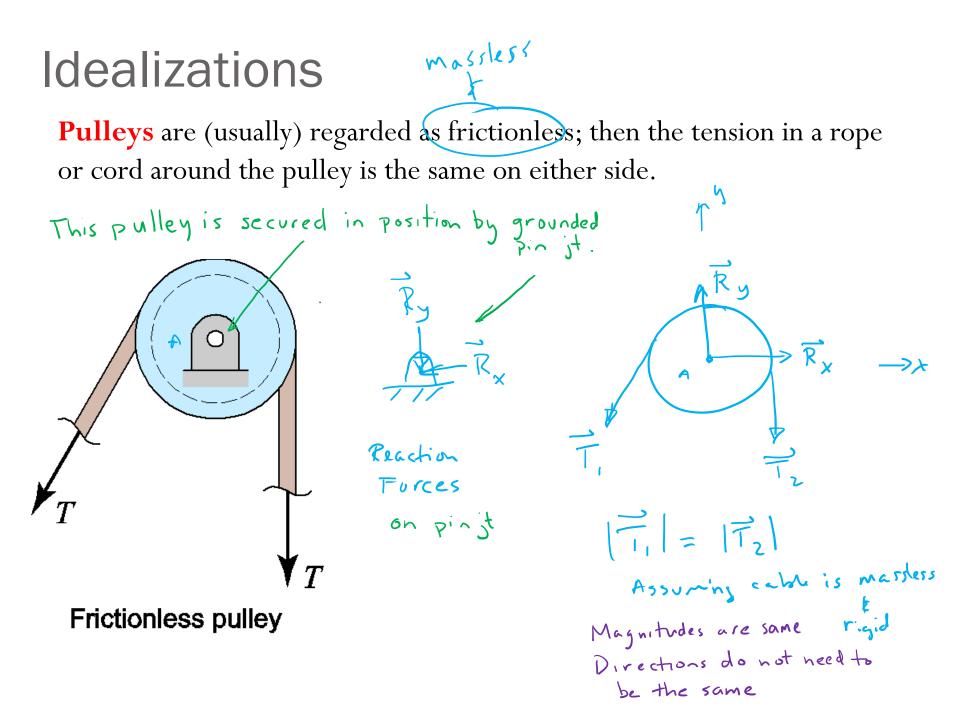
B

Show all forces acting on object

Oxtea

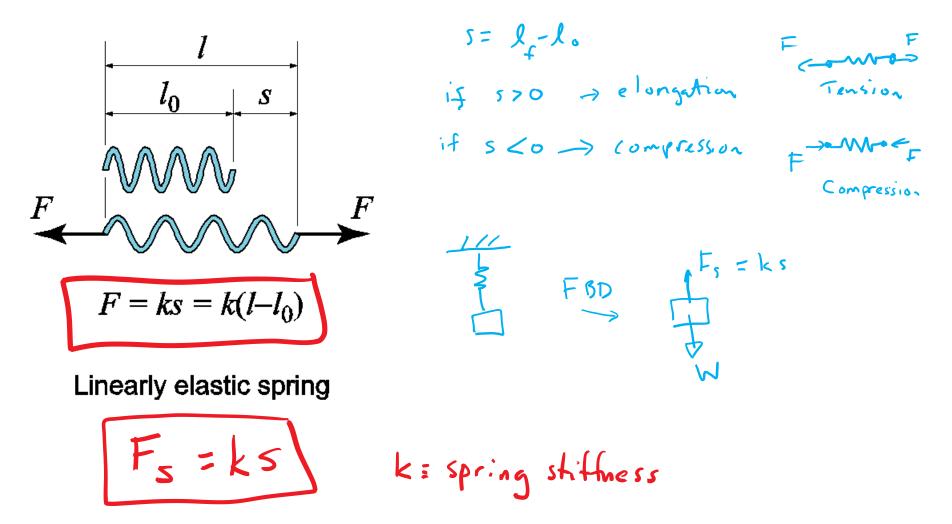
TOA

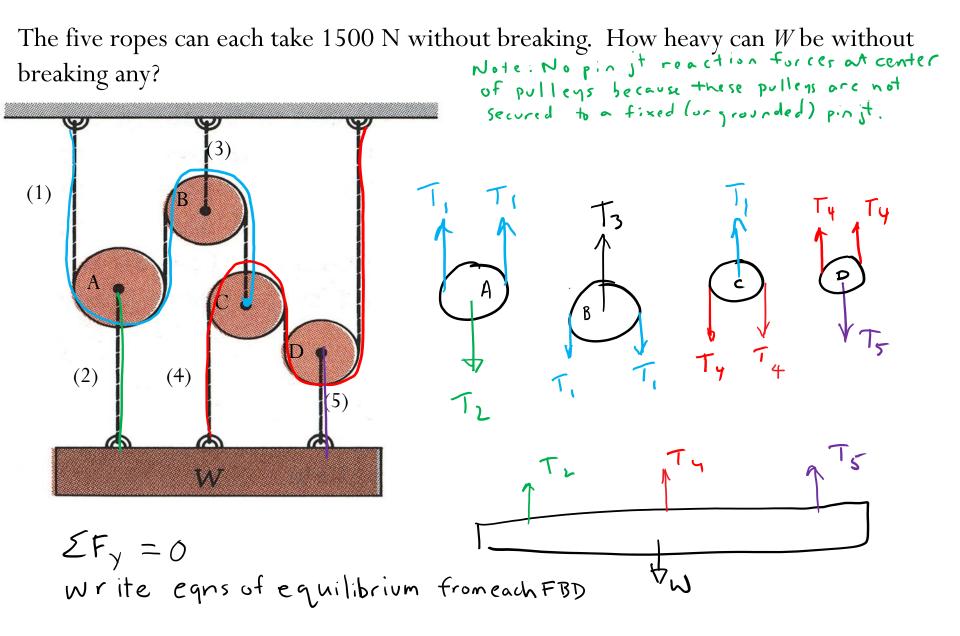

Label known and unknown forces Assume sense of unknown force object Eqns of Equilibrium Un A: $ZF_{x} : |\vec{F}_{Ac}|\cos\theta - |\vec{F}_{A5}|\cos\theta = 0$ $ZF_{y} : \vec{F}_{AD} - |\vec{F}_{A5}|\sin\theta - F_{Ac}|\sin\theta = 0$ $ZE_{y} : \vec{F}_{AD} - |\vec{F}_{A5}|\sin\theta - F_{Ac}|\sin\theta = 0$ $Zeqns \rightarrow Need more eqns$ Mussless

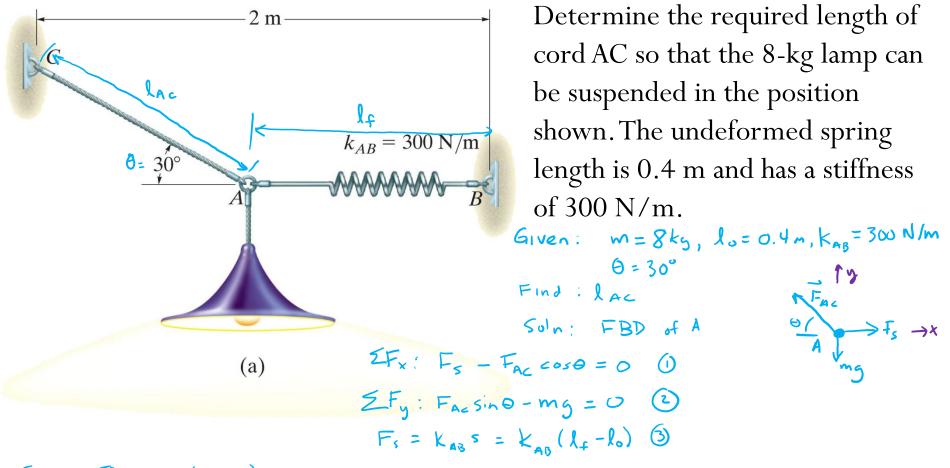

combined object! ΣF_{x} : $F_{BA} \cos\theta - F_{CA} \cos\theta = 0$ ZFy: FRASINO + Frasino - W= 0 (4) + 2 unk : For For $F_{BA} = -F_{AB}$ (5) $F_{CA} = -F_{A}$ (6) 5 unknowns, begns -> Statically Determinate /

FAC

Idealizations


Contact force on a **smooth surface** (with no friction) will be a normal force (i.e., perpendicular to the surface at the point of contact.



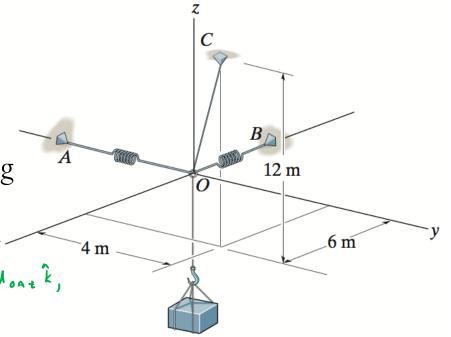


Idealizations

Springs are (usually) regarded as <u>linearly elastic</u>; then the tension is proportional to the *change* in length *s*, where the spring stiffness is k.

 $(3) int_{0} (1) : k_{AB}(l_{f} - l_{0}) - F_{Ac}\cos\theta = 0$ $(sect (2) : k_{AB}(l_{f} - l_{0}) - (\frac{mg}{\sin\theta})\cos\theta = 0 \implies l_{f} = (\frac{mg_{B}}{k}) \frac{\cos\theta}{\sin\theta} + l_{0} = 0.853m$

Ase geometrical constraint:


$$2m = l_f + l_{Ac} \cos \Theta$$

 $l_{AC} = \frac{2m - l_f}{\cos \Theta} = [1.32m = l_{AC}]$

3D force systems Use $\Sigma \overrightarrow{F_x} = 0, \Sigma \overrightarrow{F_y} = 0, \Sigma \overrightarrow{F_z} = 0$ Find the tension developed in each cable () Draw FBD Q.A. 2) Use F = Fi , w = Fi $\overline{U}_{AB} = 1\hat{i}$ $\overline{U}_{AC} = -\frac{2}{7}(1 + \frac{4}{5})$ 900 N びん = のく - そう - そん (3) Write Egnof Equil: FAB = ? Solve for the magnitudes (tensions) ΣF_{x} ; $F_{AB} - F_{Ac}(\frac{3}{5}) = 0$ FAC: ? of the 3 cables $\Sigma F_{5}: -F_{AD}(=) + F_{AC}(=) = 0$ 1=> FAD=? If wanted the forces then compute the vectors. FAB = FAB MAB, etc. 2F2: FA0 =) - 900 = 0 check: FAB = 506N, FAC = 1125N, FAD = 844N

Example – 3D

Determine the stretch in each of the two springs required to hold the 20-kg crate in the equilibrium position shown. Each spring has an unstretched length of 2 m and a stiffness of k = 360 N-m.

Check solution: If
$$\hat{u}_{0A} = U_{0Ax}\hat{i} + U_{0Ay}\hat{j} + U_{0A}$$

then $S_{0A} = \frac{F_{0c} U_{0Ay}}{k} = 218 \text{ mm}$
 $S_{0B} = \frac{F_{0c} U_{0Ax}}{k} = 327 \text{ mm}$

