Statics - TAM 211

Lecture 7
September 26, 2018

Announcements

\square No classes September 29 - October 7 for National Day Holiday
Saturday Sept 29 make-up class cancelled to accommodate for Quiz 1
\square Sunday Sept 30 make-up class cancelled to accommodate for Quiz 2
\square Upcoming deadlines:

- Thursday (9/28)
- Quiz 1, 6-7 pm
- Computer Lab (D211 for ME, D331 for CEE)
- No personal calculator, must use computer
- Friday (Sept 28)
- Written Assignment 2
- Tuesday (10/9)
- Prairie Learn HW3

Recap: Idealizations

Smooth surfaces: regarded as frictionless; force is perpendicular to surface
Pulleys: (usually) regarded as frictionless; tension around pulley is same on either side. Springs: (usually) regarded as linearly elastic; tension is proportional to change in length s.

Smooth surface

Frictionless pulley

$$
\begin{aligned}
& \left|\overrightarrow{{ }_{1}}\right| \\
& \text { Assuming cable is massless } \\
& \text { Magnitudes are same rigid } \\
& \text { Directions do not need to } \\
& \text { be the same }
\end{aligned}
$$

$$
F=k s=k\left(l-l_{0}\right)
$$

Linearly elastic spring

$$
\begin{aligned}
& s=l_{f}-l_{0} \\
& \text { if } s>0 \rightarrow \text { elongation } \\
& \text { if } s<0 \rightarrow \text { compression }
\end{aligned}
$$

Recap: Equilibrium of a system of particles

Some practical engineering problems involve the statics of interacting or interconnected particles. To solve them, we use Newton's first law

$$
\Sigma \mathbf{F}=\mathbf{0}
$$

on selected multiple free-body diagrams of particles or groups of particles.

The five ropes can each take 1500 N without breaking. How heavy can W be without breaking any?

The five ropes can each take 1500 N without breaking. How heavy can W be without breaking any?

Note: No pin st reaction forces at center of pulleys because these pulleys are not secured to a fixed (u rgrounded) pingt.
(1)
(2)
(4)

$$
\sum F_{y}=0
$$

$w r$ te eqns of equilibrium fromeach $F B D$
A: $\quad 2 T_{1}-T_{2}=0$
Chose a rope that will support the largest load. Then set its load to the breakage limit.
B: $\quad-2 T_{1}+T_{3}=0$

$$
\mathrm{T}_{2}=\mathrm{T}_{3}=2 \mathrm{~T}_{1}=4 \mathrm{~T}_{4}=2 \mathrm{~T}_{5}
$$

C: $\quad T_{1}-2 T_{4}=0$
T_{2} or T_{3} are possible choices. Pick T_{2}.
\therefore If $T_{2}=1500 \mathrm{~N}$,
D: $2 T_{4}-T_{5}=0$
$\mathrm{W}: \quad T_{2}+T_{4}+T_{5}-W=0 \quad \Longrightarrow W=T_{2}+0.25 T_{2}+0.5 T_{2}$
Then $W=2625 \mathrm{~N}$

Determine the required length of cord AC so that the $8-\mathrm{kg}$ lamp can be suspended in the position shown.

The undeformed spring length is 0.4 m and has a stiffness of $300 \mathrm{~N} / \mathrm{m}$.

Given:

$$
\begin{aligned}
& m=8 \mathrm{~kg}, l_{0}=0.4 \mathrm{~m}, \mathrm{k}_{\mathrm{A}_{3}}=300 \mathrm{~N} / \mathrm{m} \\
& \theta=30^{\circ}
\end{aligned}
$$

Find: lac
Soln: FBD of A

(1)
(a)

$$
\begin{aligned}
& \sum F_{x}: F_{s}-F_{A C} \cos \theta=0 \\
& \sum F_{y}: F_{A C} \sin \theta-m g=0 \\
& F_{s}=k_{A B} s=k_{A B}\left(l_{f}-l_{0}\right)
\end{aligned}
$$

(3) into (1): $k_{A B}\left(l_{f}-l_{0}\right)-F_{A C} \cos \theta=0$
insert (2): $k_{A B}\left(l_{f}-l_{0}\right)-\left(\frac{m g}{\sin \theta}\right) \cos \theta=0 \Rightarrow l_{f}=\left(\frac{m g_{B}}{k}\right) \frac{\cos \theta}{\sin \theta}+l_{0}=0.853 \mathrm{~m}$
Use geometrical constraint: $2 m=l_{f}+l_{A c} \cos \theta$

$$
l_{A C}=\frac{2 m-l_{f}}{\cos \theta}=1.32 \mathrm{~m}=l_{A C}
$$

3D force systems Use $\sum \overrightarrow{\boldsymbol{F}_{x}}=0, \sum \overrightarrow{\boldsymbol{F}_{y}}=0, \sum \overrightarrow{\boldsymbol{F}_{z}}=0$

$$
\begin{aligned}
& \text { (1) Draw } \\
& F B D Q A: \quad \vec{F}_{A B} \\
& \vec{F}_{A C} \\
& W=900 N
\end{aligned}
$$

(2) Use $\vec{F}=F \vec{u}, \vec{u}=\frac{\vec{r}}{r|\vec{r}|}$

$$
\begin{aligned}
& \vec{u}_{A B}=1 \hat{\imath} \\
& \vec{u}_{A C}=-\frac{3}{5} \hat{\imath}+\frac{4}{5} \hat{\jmath} \\
& \vec{u}_{A D}=0 \hat{\imath}-\frac{3}{5} \hat{\jmath}+\frac{4}{5} \hat{k}
\end{aligned}
$$

(3) Write Eanof Equal:

$$
\left.\begin{array}{l}
\sum F_{x}: F_{A B}-F_{A C}\left(\frac{3}{5}\right)=0 \\
\sum F_{y}:-F_{A D}\left(\frac{3}{5}\right)+F_{A C}\left(\frac{4}{5}\right)=0 \\
\left.\sum F_{Z}: F_{A D} \frac{4}{5}\right)-900=0
\end{array}\right\} \Rightarrow
$$

$F_{A C}=$? If wanted the forces, then compute $F_{A D}=$?

Solve for the magnitudes (tensions)

$$
F_{A B}=\text { ? of the } 3 \text { cables }
$$

check: $F_{A B}=506 \mathrm{~N}, F_{A C}=1125 \mathrm{~N}, F_{A D}=844 \mathrm{~N}$

Example - 3D
Determine the stretch in each of the two springs required to hold the $20-\mathrm{kg}$ crate in the equilibrium position shown. Each spring has an unstretched length of 2 m and a stiffness of $k=360 \mathrm{~N}-\mathrm{m}$.

Check solution: If $\vec{u}_{O A}=u_{\text {AX }} \hat{\imath}+u_{\text {DAY }} \hat{\jmath}+u_{\text {OAt }} \hat{k}$, then $s_{O A}=\frac{F_{O C} u_{O A Y}}{k}=218 \mathrm{~mm}$

$$
s_{O B}=\frac{F_{O C} u_{O A} x}{k}=327 \mathrm{~mm}
$$

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Moment of a force

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

Moment 1.A very brief period of time. An exact point in time. 2. Importance. 3. A turning effect produced by a force acting at a distance on an object. Oxford Dictionary

Moment of a force - scalar formulation

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

(a) Sense of rotatio
 Magnitude: In a 2D case (where $\overrightarrow{\boldsymbol{F}}$ is perpendicular to $\overrightarrow{\boldsymbol{d}}$), the magnitude of the moment about point O is $M_{O}=F d$
(b)

Moment of a force - vector formulation

The moment of a force $\overrightarrow{\boldsymbol{F}}$ about point O, or actually about the moment axis passing through O and perpendicular to the plane containing O and $\overrightarrow{\boldsymbol{F}}$, can be expressed using the cross (vector) product, namely:

$$
\overrightarrow{\boldsymbol{M}_{O}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}
$$

where $\overrightarrow{\boldsymbol{r}}$ is the position vector directed from O to any point on the line of action of $\overrightarrow{\boldsymbol{F}}$.

$M_{0}=F d^{\prime}$

$$
\theta \neq 90^{\circ}
$$

Moment of a force - vector formulation

Use cross product: $\overrightarrow{\boldsymbol{M}_{O}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}$
Direction: Defined by right hand rule.

Magnitude: \quad recall $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta$

