Statics - TAM TAM 211

Lecture 8

September 28, 2018

Announcements

Do classes September 29 - October 7 for National Day Holiday
Saturday Sept 29 make-up class cancelled to accommodate for Quiz 1
Sunday Sept 30 make-up class cancelled to accommodate for Quiz 2
\square Enjoy your vacation!
\square Upcoming deadlines:

- Friday (today)
- Written Assignment 2
- Tuesday (10/9)
- Prairie Learn HW3
- Friday (10/12)
- Written Assignment 3

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis (using Scalar Triple Product)
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force

Scalar Formulation: $M_{O}=F d \quad$ Scalar Formulation: $M_{O}=F d$,

Direction: Moment about point $O \overrightarrow{M_{O}}$ is perpendicular to the plane that contains the force \vec{F} and its moment arm \vec{d}. The right-hand rule is used to define the sense.
Magnitude: In a 2D case (where \vec{F} is perpendicular to \vec{d}), the magnitude of the moment about point O is $M_{O}=F d$

Recap: Moment of a force

Vector Formulation

Use cross product: $\overrightarrow{\boldsymbol{M}_{O}}=\vec{r} \times \overrightarrow{\boldsymbol{F}}$
Direction: Defined by right hand rule.

Magnitude:
recall $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta$
$M_{O}=\left|\overrightarrow{\boldsymbol{M}_{O}}\right|=|\vec{r}||\overrightarrow{\boldsymbol{F}}| \sin \theta=F(r \sin \theta)=$ Fd $\begin{aligned} & d \text { is the pert } \\ & \text { from } 0 \text { to } \vec{F}\end{aligned}$

Example - Vector Formulation

Given: $\mathbf{F}=\{600 \mathbf{i}+800 \mathbf{j}-500 \mathbf{k}\} \mathrm{N}$

Find: Moment of the force about point B.

Moment of a force about a specified axis

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the y-axis.

Recall: the projected component of a vector, $\overrightarrow{\boldsymbol{A}}$, along the direction of another, $\stackrel{\rightharpoonup}{\boldsymbol{B}}$, can be determined using the dot product.

Moment of a force about a specified axis (Scalar Triple Product)

The magnitude of the projected moment about any generic axis a can be computed using the scalar triple product:

The direction of the projected moment about any generic axis a can be defined using :
where $\overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}}$ is the unit vector along axis a

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the x axis.

