Statics - TAM TAM 211

Lecture 8
September 28, 2018

Announcements

- □ No classes September 29 October 7 for National Day Holiday
 - ☐ Saturday Sept 29 make-up class cancelled to accommodate for Quiz 1
 - ☐ Sunday Sept 30 make-up class cancelled to accommodate for Quiz 2
 - ☐ Enjoy your vacation!
- ☐ Upcoming deadlines:
- Friday (today)
 - Written Assignment 2
- Tuesday (10/9)
 - Prairie Learn HW3
- Friday (10/12)
 - Written Assignment 3

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the <u>moment of a force</u> and show how to calculate it in two and three dimensions
- How to find the <u>moment about a specified axis</u> (using Scalar Triple Product)
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force

Scalar Formulation: $M_O = F d$ Scalar Formulation: $M_O = F d'$

Direction: Moment about point $O[\overline{M_0}]$ is perpendicular to the plane that contains the force \overline{F} and its moment arm \overline{d} . The right-hand rule is used to define the sense.

Magnitude: In a 2D case (where \vec{F} is perpendicular to \vec{d}), the magnitude of the moment about point O is $M_O = F d$

Recap: Moment of a force

Vector Formulation

Use cross product: $\overrightarrow{M_O} = \overrightarrow{r} \times \overrightarrow{F}$

Direction: Defined by right hand rule.

ection: Defined by right hand rule.

$$\overrightarrow{k} \text{ direction}) \circ \overrightarrow{k}$$

$$\overrightarrow{R} \text{ direction}) \circ \overrightarrow{k}$$

$$\overrightarrow{R} \text{ case}$$

$$\overrightarrow{R} \text{ of } \overrightarrow{R} \text{ of }$$

Magnitude:
$$recall |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$$
 $M_O = |\vec{M}_O| = |\vec{r}| |\vec{F}| \sin \theta = F(r \sin \theta) = Fd$ from 0 to \vec{F}

Example - Vector Formulation

Moment of a force about a specified axis

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the *y*-axis.

Recall: the projected component of a vector, \overrightarrow{A} , along the direction of another, \overrightarrow{B} , can be determined using the dot product.

Moment of a force about a specified axis (Scalar Triple Product)

The <u>magnitude</u> of the projected moment about any generic axis *a* can be computed using the scalar triple product:

The <u>direction</u> of the projected moment about any generic axis *a* can be defined using :

where $\overrightarrow{u_a}$ is the unit vector along axis a

Axis of projection

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the x axis.